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FOREWORD TO VOL III

,

As saw in Volume rand- II!, 'XChapters 1 6) many properties of the graph
. .:: - ,. , :-)

of a function can be andlyz4d,frOurknowledge of the deriVatives of the. func- 17 i-

..tion, the value of .the derivative being the'slope of'the- tAngent line at a :

point.i. For polynomial, cir6u1ar,4exponentiaI and.. related flintions we were-

ableto find derivatives, which' were then used to adalyze rise and fall,:

conex,irtYvelohitY/or accelerativrr.. -These 4thoaare'axtended in Ch4pter 8
-

/
. . . . .

'of/thivolu4 to functioris WhiChdre sums, products, composites, powers, .,/., .. _.

recprocals, quo-tients or inverses of known functions
iih

In principle we shall

/ '' 4
then;be ableto andlyze the propsrties,.of various tlgetirej.c codoinationS of

the functions .discussed in vplume-One and two.`;

.

This 'volume is .begun with the study of ateajuncIer the aph of. function,
. 7

..4'.'6Ar--

a concept which, 8,t' f' t- lance"seems to be unrelaIdtO that of 'tangent line,

The fact that ther'q1.4b cOncepts are related is one o'the great <tiscov.eries in
. 4 ,

rQE1)DoVideVd
le ,.

is given' )y
'N .

This result is

mathematics, first noted byBorrow4(1630-1 77)., He showed `tat

by the graph-of f, the x-axis vertices at a 'and

F(b) - F(a) where F is a function whose derivative is f.
.

6 ,

appropriately knOwn as the Fundamental,TheOrem of. Calculus. The first three

sections'of. CY er 7:aredevoted to developing a geOmetric hnderstanckng of

"this result. -The-fina9. three sections concentrate on nbtation and%tecnniquee
.

.

for finding areas by using tile Fundamental Theorem.

. .

. %
. / ! .,ri, .,

hapter.8 is primarily a discussion of.mecOd'sof differentiating..tAgeb s '

f N .).

comlAnations or functions. Where appropate( integration. concepts (that is,-

tha. area concpts of Chapter 7) are also diOussed, as.theseprovide a fUrther 4

geometricNinterpret tion for analyzing the behavior of functions..
/ A ,,,,,P_These integra&n oncePts are e lored futher Ch... J, which con-

.-t .
.

tains an important met d for finding antideatives4 arfint$,xpre4tion of..

the. Fundamental Theorem in terms o average.4valile and'volufnes of 0.61i.es.-:of
4 ...-3- 4
revolution,.as well a-g>aumeric4 int gr4tion methods and. a.discuSsion of

. 'N
.remainder estimates fo'r Taylor,appr imatioh.

Some elementary differential equations are discu6sed in Chapter 10,.with

applicAtion, -to motion and'Xwth and deca.-AIn addition it i.s shown hdw the
' e

.'xi

expression of the.logars an Lntegrai .cari be used to obtain thp.pnoper-
.

Ades of the logarithm and exponenti

.
The appendices are intended to'fill fogica3

.ment Of the tekt`and tb extend the'material of he te t.

.

.

fulictibus. / T

ga )in the int4itilie devel

1
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.
Chapter 7

AREA AXDTHE INTEGRAL.

This chapter begins a discussion of the concept of area of a region

bounded by the graph of a function. At first glance, this area appears to be

entirely unrelatedito our discussions of derivatives in volume one. Upon'

closer inspection, however, we shall discover that these two ideas.must be

related: Suppose A.(x) represents the area of the shaded region shown in

the folldwing figure.

we move x long the horizontal axis the area A(X) of the-shaded.region

c anges. A measure of the rate of change in A(x) is, of course, At(x).,

the value_ of ti e derivative ofthe ar ea function at x. This change in area

is also related-to the height of the -graph of. f at x; that is, to the value

f(x). ConsiderCo` for example, the case when f(x) is, large.
t

this region ties:

area' A.(x +11) - A(x)

y = f(x)

X X +

'If we move a small amount, say h funits, to the right, the area A(x + h)

increases fairly quickly, so that the additional area A(x +11) - A(x) is

fairly largd. If, hbwever, f(x) is close to tne x-axis

545



this regioh has

area A(x + h) -,A(x)

then the additional area A(x + h) - A(x) will be fairly small.,

These considerations lead us tosuspect-tha-05there must be some relation-,
.

ship between the rate of change of the area function x -4A(x). and'the values

Of f, that is A'(x) must be related to f(x).- In this chapter we shall
uP

show that for most of the functions of interest to usrin this text, the.deriva-

tive A' of the area.functionoig f; that.is, A'(x) = f(x).

Of course,.it is not immediately obvious wh9t the area bounded by 4graph
o

Should be, particularly'if f is not a constant or linear function, Therefore,

in the first section, after convideriag constant and linear cases, we deal with

an epproximation procedure for obtaining the area of a region bounded by the

graph of a nonlinear'function (section 7-1). A useful notation for this area

is-introduced and various liatuitiveproperties of area 'are theft discussed

(Sectidn 7-2). A proof of the relation At(icT= f(x) is gi.iren in?SectiOn 7-3,

where we establish. thesd-called Fundamental Theorem of Calculus, /hich stares.

that the area bounded by the graph of f; the .X-axis/and yeNicallines at

and b is given by the difference' F(b) where .F is any antideriva-

tive of f. (that F' = f). Further notation idintroduCed in. Section

and,the results are extended to. signed area in Section 7-5.-

The final section discusses the use of antiderivative formulas in calcu-

lating areas. Further antiditferentiation methods are discussed in Section

9-1 and Appendix 4. This basic connection between the area function and f

is also diacuSsed in Section 8-2,where we'use the Fundamental Theorem.to

discuss the relationship between the derivatives of a function and the shape

Of its graph.

0
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7 -I. Area Under a 'Graph.

We first attack the general problem of finding the area Of' a. region

located in the first quadrant, bounded by the graph of_a nonnegative function

f, the x-axis, the y-axis and a.second vertical line, as in Figure .7-la.. We

shall not specify the value of the coordinate x at which the second vertical.

line cuts the x-axis. This will allow us to find general formulas rather than.

particular numbers. We shall denote the desired area by A(x).

Figure 7 -la.

Area under a graph

Frequently the first step a mathematician takes in attacking a new prob-

lem is to investigate a few special cases of the problem. He often find'S this

initial investigation very helpful in setting his,mind working towards a gen-

eral solution: In this spirit we begin-with the simplest of polYnomial_func-

.

tions and examine the area under the graph of the constant function.

f :.x --) c,

where 'c is a fixed positive number. This case is very easy to handle. In

fact, since we know that the area of a rectangle is equal to the.Praduct of

its base and its height, we see that the desired

A(x) =.cx.
Ay

(See Figure 7-lb.)

area is

The

x.

Figure 7.71.$ -

area of the shaded, region is cx.

547

y = f(x) = c



Note that the "area function"

A : x cx

is a linear function whose derivative A' is

: x-4 c.

The next case we examine is that of a linear fufiction

f : x mx + b.

The area we wish to find is that of the shaded region in'Figure 7-1e.

,Figure 7-1c

Area under f : x mx + b

This case is also easy toharidle since the shaded region is a trapezoid.
1

We recall that the area of a trapezoid 7 the sum i& the parallel bases

times the height. In Figure 7-1c the trapezoid is lying on its side, its

"bases" have lengths f(0) and f(X),: its "height" is x. Therefore, the

'desired area'is

A(x)
f(0) + f(x)

. 2

(m 0 + b) + (mx +b)
2

mx + 2b

2-
mx

+ bx.2

We obserlie that the derivative' of the "area function"

548
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A : x
2

+ bx 4

is the linear function

f : + b.,

After the constant functions and the linear funcVions, the next simplest'

polynomial functions are the quad?ftic functions. Even though these fu ctions

seem to be but a step removed grom the linearfunctions, we shall see that

they introduce an entirely new order of complexity. The reason for this is

that the graphs of quadratic functions are curves, and we have no formulas

for calculating 'areas, of regions bounded by curves (except, of course, when

the curves' are circles). Hence, it will be wise to moVe more slowly, and

first study a very special case- -say the function f : x -)x2,.1-° (See Figure

7-1d.)

Figure 7-1d

Area under f : x x
2

If .ft were possible to cut the region up into a finite number of Tectangur

.lar or triangular parts we .could add the-areas of the parts to obtain the total

area. By this method the best we can do is to approximate the area. We can

cover the region with rectangles,and obtain as the Sum of their reas a value..

that is somewhat.larger than the one we seek. .0n the othd!. hand, we can pack

.
rectangles into the region" without overlapping, and bbtainin the snm'of their

areas a value that is somewhat too small. In this way we may at least hope,to
d.

arrive at an approx,iMate value that:we might be able tn use in constructing

our area unction.

Our prOceaure is to subdivide the line svment from 0 to x 'into a
. ,

_

large number of equal'parts, then to use the subintervals as baSes of rec-
.

tangles interior and exterior to the region. TO'illuseratethis procedure

we examine a case where the number of subdivisions is,small.

Q
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-to 4".

Suppose we -diyide the lineiregment from 0 to x into 5 equal sub-
..

interlials. Each of these subintervals will be the base of an interior

tangle, thethe largest rectangle, that can be drawn uhdeT the curve with this

subintert,ti 'as base (Figure 7-:10). Each of these subintervals will also

the base of'an exterior rectangle,.the smallest rectangle that'cantedriNIT-7

above the curvewith-this rectangle as basekzure -1f).

Figure 7-le

Area approximated by

interior rectangles.

Figure 7-1f

Agea approximated y

exterior rectang'1
/es.

A(x) satisfies the two .We see from these figures that our desired area

inequalities

-(1) A(x) > the sum of the areas of the interior rectangles,

(2) A(x) < the sum of the areaO:of the exterior rectangles.

Let us calculate 'the sum ;of t1e area of the interior and exterior rectangles.

. If we split the segment from 0 to. .x into 5 equal parts,. the.' Length of

each part will be
x

5
and the endPoints of the parts will be--.

( 3)
x

0, 5,, .4x 5x

5 ;

From Figure 7-1g we see thaVthe'height of an interiol.retangle is
4

where a is the left endpoint Of itsbase; the height of an exterior rectangle

is f(b)r, Inhere. b is the right endpoint of its. base.



Figure 7-1g

Heights of'.interior,and exterior rectangles.

Listing the subdivisions 0) we .know that the heights of the (five inter-

ior rectangles are
:CP

f(0), r(ri), f(i),f(4);

the heights Ofthe corresponding exterior rectangles:are

x
.:44ultiply:ing each of these heights by. the common .b:Ise length 5,

the area of the corresponding rectangles.
The sum of the area of

rectangles is

5[f(0) + f(?-1) + f(5)
5

we obtain

the interior

The sum of the areas'Of the._exterior rectangle's is

Irf(x) f(2) f(1-41) i'()].
5 5 ,5 5 5

Since f x -4 x
2

we have

*
The leftMost "rectangular region" has zero area.

7%.
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d.,

. . 2
.4x

2
'9x

2

f(0) = 0, i'(2-c) = K ,f3x.
) =le. . 5 ° 25 ' 25 ' ''''' 5. .25 '

i/ .. 0

16x
and

. .25x

25 5 25

Ths sum of. the 'areas f the interior rectangles-.

*4.

1 25 2 25 25

xfo
2

.+..4x
2

9x
2

16x
2

5

x3 r 14' § 16 1
5 1.25 25 '25 25J

.1

6x3
25

The sum of the areas of the exterior rectangles

x3 I 1 4 9 16 251
5 25 25 25 25 25J

25

Our desired area A(x) lies between thebe two quantities; that is,

6x3 11x3
25 25

This is certainly not a very accurate estimate of our desired area. If,

. however.; we use a larger number of subdivisions we may hope to improve our

estimate.

To obtain S general estimation formula, we let n denote the number of

subdivisions of the segment frbm 0 to x. The length of each part will be
x

and the endpoints will be

2(), ...,'(n - 1)$., n

The heights, of the interior rectangles will be

f(0) f(22c) , f((n 4322!).

The heights of the exterior rectangles will be

2x\ f(n)
111, n 1,

The sums of the areas of the interior and-exterior rectangles will be,

respectively

552 -14



(4)

'and

n /.1
f(n)

2x)' 1,((n 1))EN14.

and,:iwgenerq,1

r-,

.n L

311-fd f(2n
)
%

, we have

f(0)':=
fo.) x 2X.) _;14x

22

0,
2

k;.c) k
2

2
x

2

2
= .

n

The interior sum (4) can then be rewritten as

ccP

X x
2

4x
2

(. n . 1)2x2] x3

71 P + 7 +
+ ... .4.

[°.
\1. + 4 +

n. n
2 n

2
n

To simplify this we use the formula for the first (n - 1) squares

.), * 4-:+ ... + (n - )2 = e(n - 1)(n)(2n - 1) = r4 .- + 1)
3 2n

6n
2

We can thus rewrite the interiorsum (4) as
1

x
3 x3 x3

+
3 2n

6n
2 '

A sithilar process applied to the exterior sum. (5) gives. the suM of the

areas of the exterior rectangles

x3 x3 ,j
+ +

.

o
3 2n ,

n
2

Our desired area <A( x) lies between these two 'quantities; that is,

x3' x3 x3 x3 x3.x3
(6) _ + < A(x) < f

3
2n

6n .

2n
6n

2

See Appendix 3.

.5531
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This pust be true for each positive integer x is fixed and n is

'very .large compare x -each.of the terms

3x x 3

2n 2n,,
and

*):3
t6n2

must be very close to zero. This process.suggests-that the only value that

,
,x3

the area A(x) can have is

A
2

-We summarize: if 'f x,-)x and A(x) is the area of the region

. bounded by the x-axis; the y -axis, the graph ofo'f and the vertical liCe x

units to the right of the origin, then.

.

Note that the,derivative of the are
,

that is, A" = f.
4

This same relationship. A' = f was true in the base .f constant and

.linear functioi. We might conjecture that it is always true. In Section

7-3 we shali'show that it is indeed true for a wide class 'of functions f,

a clpss which includes most of the functions of interest to us in this book.
re'
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Exeroises -al
. . ......--, r . .

1. We Tiowed in this section t, hat the region bolinded 193w-the coordina,te axesi.
a.

,-- y = x?;' and a verticallinyh;t x., h s an area which is between tie' sa
of the interior and the-exterior rect,an les. ,_.This inequality (6) Wasp

3 2n + 2 < A(x)-<- x3.(1 4. 1 .4. 1 \ -
4x3 (1 2 1

6n Ns t. us) 3 2n 6n21
. .

° .
1 ; *

(a) It follows that
, . i.

3 2n 6n2) 3 2n
4

n2)
&

°

Express this relationship when.

(1) n = 5
(iA) n = 100

(b) From (6) we khow that

(c)

"

+2
3 (1 1- < A(2) < 23

3 -
+ 2n

1
+

1

j 2ri 6n3 1..6n

B

Using directly the results of part (a), i.e., with minimum computa-

tion, express' this relationship when

- ( i) n = 5
(ii) ,n ;100

1Using A : x-)-3 x3 for the area function associated with the

function, f :x x2, find the .tarea in the fir. quadrant of the
-70

region bounded by the coordinate axes, y' = x2, and the vertical

line Ert
1(i) x =

(ii) x = 3,r3-

555



2. If .f : x
q .

and'. 4(x), is the

area...of-the region.

depicted in the

sketch to the right:,'
. .

show .that he area

...function its 6..

x4-

0,
using the method of

this seaton for
e ,

findIng the area

3

funCtion of x -c
e

[Hint: The sum of

(n - 1) cubes is.

- 1)12

Equal sub- tervals of

;(a) First,. show that the sum of the areas of the interior

(b) Second,

showing

. Cc)

find

that

rectangles is

V

t2j sum fAhe areas of the exterior rectangles;

(L ,77
, 2

+
1 ) < A(x).-.<

1%
A : x -4,

1Tx .

x
4

+ 2)

Next, using the inequality of part ) above, and letting x = 1,-

find an expresM.pn for A(1); .whe

(i)
AL- -(1 'Ciiy

n = 5

n = 100
-,

'(d) From the expressions found"f0t A(1) in part (c) abov find, With,

minimum computation? an expression for A(2), when n = 100.

556
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4
'sect at (0,0) and (1;1). The

(e)

1,

1
Using ,A x 7 x for thp--11r4 function .associated-' ith the

.func'ti'on'

region bounded

\ line ate' .

x =

X -)x,3 , fina the Area in tbe...first.quadrant: of-the

by. the c!ordinatIreo:da.,-* y.=;0-;. and theovertical
o

-c---,. i -,\
.-1 -

... ' .2

3. Tilld"the area Of the region in

first quadrantbounded by = Oy.

y ='1, and =x3.

.[Hint:, y ..x sst

shaded area equals the area under
fi

1 minus tide area under y =

- .(between the interse4ton points).r

4: Find the area of the regiqp in the

first quadrant bounded by y = x

and y =,x
2

.

[Hint: Find the intersection
,

'points; find the area under each'

c*-ve between intersection points;

find the di%ffdrence between these

areas.]

A

Sketc4 y = x3 and y = L- < x < 3, .
In a similar manner to that of Number3 and Number 4, find the lea

between the two curves..

ye

e

507 7 1
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s .

6. Assu y = ax
2

+ bx c

ip in-the pds ion the
,,. -
sketeh to the riht. By

suraing. the ..areas of 'interior

irectangles and eiterpr

Rgles,..Tind the area of.
I..i . -

rego 'boUn in the first

quadran't ley the coordinate'
.

'the AL1r7e,

y. ax
2

+ bx + e, and the

yei.;tichl line' at'

. if ax2 +

show that the 'Ogee function is

1 1 2
: x

3
ax

3
+

2

u,

+ CX.,

7. What conditions on 4, b4 c will

numbers such that on the in terval from 0 to x 'the, graph of .

2'
y = ax X ± c, a / 0, will fie in the. first quadrant?

u

8. Using the results of Number 7, det 4.ne. which :of the following have

;ion-empty regions in the first quadrant bounded by the coordinate axes,

the gl'aph of the fu ction and some4vertical line to the right of the

guarintee that there are some positive

origin

(a) - f x --) x2 + 1 (c) f : x --) 2x - 3x

;(b) 'f x --) x
2

-.2x (d). f : .?c -4 - 1 tx2

9 For each of the following use Number 6. to find an expression for Pi(x).1/

and then the area -of the region bounded by the coordiriate axes, the .

indicjted curve and the indicated verti41 lines.

( f : x e2x2 + 3

(i) x = 1 x =.3

(6) f x 12x2 + 38x + .16

x (ii) x =

(c) f x 12, + 18x - 3x
2'

(i) x = 0 x = 2

.--
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10. Find the area in quadrant ones

bounded by the quarter circle

(with center at origin and

radius :2), the line

.x 7 y + 4 =.0, and,the
....

vertical line tangent to the

circle.

[Hint:

)..

Find intersection

points; find area of quartfr..

circle by geOmatzy; subtract

areas..]

Find, area of regidft,boundea.,by.
'

y = 0, y =.9 - x
2

and

= 6 -
2
x.

Use symjtryi

,.12. (a) For the function -f : x -4):
2

,. we developed in this section an

inequality for the area function:

x7

)F.

(1 -. 2) < A(x) 2S:T< 1 +
2n
3 1

-).

2n
2

)

Show that if we average these sums of areas of interim' and

extbrior for n = 5, we ha A(x) 2.fis x3.

(b) Now estimate A(x) for the same function by connecting (O,f(0))

to (2=
5 \5

; ,'f(5j)) to
(.2;

, and summing the-
resultingtrapethigs.- .

trr
s
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k .
. _

(c) As a third estimate, sum A. rectapgleVW:ith equpl wddths alOhg,the
- ..

the X-axis, and heights -erd*4e,athe-illt4,oint of each interval;

i.e.,theiddth of pacilA44ngle:aUI and the heights_

would be ,f(5-;T,

(d) Which of these three estimates

3

1
area _of, x

3
.

above is the closest to the exact

a

Ta.

5 ::1 2

6



7-2. InteEral Notation

Let us introdUcesome common notation. SUPpose that a < b, that f(x)

is defined for a < x < b, and that the graph of .f does not.go below. the

X-axis in this interval; that .is, f(x) ? 0 for a < x.< b. The symbol

a

is read:"the integral of f from. a to b" and denotes the area of the

region boundedlythe tl4graph of f and tEe two vertical lines

I.given by x = a and x = b. (See Figure 7-2a.) The terminology and:the

symb4 f (which isthe Roman letter, summa) arisrom the procedure (des7

.cribed4in the preiriOus section)of.pproximating sums for finding areas. The

Figure 7-2a

Area under a graph.

numbers. a_ and b are, respectively, called the lower and upper limitsof

integration.
kr/

In'thefirst section for convenience we took the lower limit a = 0 and

denoted the upper limit b by x, obtaining formulas for ,

for certain simple functions f. Using. elementary geometry we found that

(1) if f x c, then f = .cx;

0

and

(2) if f x mx +
x' 2.

, then f = mx + bx.
2

0
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We also epproximated wiAlE interior and 'exterior rectangles to conqludetenta-

tively that

(3)
7

In 'order to become more familiar with the integral notation (1), we Shg

discuss here some properties whichwe expect area.O possess. This.discussi n

will a:Tie from intuition

. b

areas f can be found in such a Way a to be consistent with elementary .
a

area principlet. In the appendi s w .shall show that the process of approxiL

mation by sums oT areas of interior and exterior rectangles will, for.the

elementary functions which concern us, indeed 'give concept of area which is

cohsistedt with these principles. te

that "is,, we shall suppose thpt the desired

.
The area of a region, such as that shown ure 7-2a, 'sho ld be a non-

.

negative number; that is,--

(1k) if f(X)-.>0 for a:< x b, then f > O.
a

We expect that the area of a region shoUld not exceed the area of any larger

region; a useful formulation of this idea:

(5) if f(x) < g(x), fdr.

b b
f<

7 a

(See Figure 7-2b.)

Figure 7-2b

The area under f .,does not

exceed the area' under g.

a < x < b, then

"f

,/".- b
b - a

Figure 7-2c
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An application of the inequality of,15) gives bounds for area in terms of

bounds for f. Suppose M is a constant and f(x) < M for a < x < b. With

x --)M we can apply (5) to Obtain.

4-

f < g = Kb -
a a

Similar arguMents can be applied,if M < f(x) to Obtain m(b'-

(See Figure 7 -2c.) In summary:'

if m < f(x) < M for a.< X < b then.

b

m(b - d) < f < M(b - a).
a

b
f.

A line has no width and hen7e zero area. Thus, if we take, -b,= a, we

.should expect the area to be zero; that is,

a

(7) f = 0
a

This is consistent with our result (6), for.il' we take a we obtain

0=mx0.< f <Mx.0=0.
a

If we choose new horizontal or vertical scales then we expect the area to

be changed by a corresponding factor. One useful consequence of this:

If g(x) = af(x), for a < x < b, where' a is 4

(8)

positive constant, then

(See Figure 7-2d.)

= a f.

a a

=

The area under

a

g is cx times the area

Figure .7-2d
, b
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In one region is the union of two non - overlapping regions we expect the

area .of-the first region to be the sklm of the areas of the subregions. This

.additivity principle has two useful consyquences, .(9) 'and (10).

(9) -A If c lies.between a and .b, then'' \?
...

Ca f ,'
4

a c

f;
.

b- c ,- b

N
that ,is, if we cut the regibn under f by a vertioel line, then the area is

the sum of the two resultingareas. (See Figure 7 -2e.)
...

(`-. .

Figure-7-2e

The area of the region under the graph of f

between a and b is the sum of,the areas

of regions A and B,

A second useful formulation of additdviw is obtained"for the. s of two

graphs. The sum f +.g. is defined as the function whose value at' x

.f(x) + g(x); .the is, the graph. of f + g is obtained by adding the ordi ates

of the graphs of f and g.o We have

. (10)

.(See Figure 7-2f).

f+
-g.

a a

-1
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The area of the region under the graph.of f plus
o

the area of the region under the graPh' of .g is

the area of the region ,...ndeo: 3.f f s.

'

These principles are not independent;'that it-,some are conseqUences of

others: Other useful principles will-be introdUced as need arises. . The -.

-following examples show how.we can Combine area principles with our knowledge.

of particular areas to find other areas.

Example 7-2a. Find te area (of ehe region ) under the graph of

Y x 7+1 + x + x2, between a = 0 and b = 4.

We need to evaluate

;

The function f can be qxpressed s the'sbm of the.two functions

s .

: .x -)1 + x and f2 x -> x
2

.

FortulaS (2) and 1(3).give

x 2

fl x +
x

o

So that with x, = 4 'we ha've;

x

and

_
f = 4 +

16
12

o l
6

f2 -.33

_x3
3

* . .. .

By "area under the graph' we Shall mean "area of.the region-under the
-graph,". as described' in the opening paragraph of this section.

. X65
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The additivity principle (10) then gives

4 4 4 64 100'
f = + f

2
= 12

+ 3 3
0 0

Example 7-2b. Find 5 f where

f x 5 - x + 2x2.

We'seek to find the 'area of the region bounded by the graph of f; the

x -axis and the lines x =. 1, x = 5. Let us first graph the function f. The

c
.integral f is the area of the shaded region of Figure 7-2g.

1

50

Figure 7-2g

f : x -05 - x + 2x
2

JTo calculate . 5, f we ,first' express it in terms of integrals with lower

1 ,

limit 0. We have A,

Jo

1

cs ff =
0 C,0 1

so that
.

Is

cs
11) . f f - f.

1 0 ' 0

Now we write.

. iCa.(x
- x, and f

2
(x) = x

2
,
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so that with' f . fi + 2f2, (8) and (10) give.

c 5

0

f = 5 f
0

1
+ 2

The results (2) and (3) give.

f0 fl

Therefore, w *have

-- cl c0 f ,\ 0

5 5 ,r
f =

( 5 fl 41. c 5 f 2)

1

0

f
1 _+

2
2

O.

= - f: f

= (5 .5. 7 + 2
3)

- (5.1
1

2
+2

5
0

x
2

2

1

0

and

1.---

1

0

f
2

"f + 2

1

=
x3

3

1.

f .

2

272

3.

EXamptb 7-2c. Find the area, of the region between the graphs of the

functions f and g defined by .

f(x) = x2 - 6x.+ 7 and g(x) = -x
2

4-, 7x - 11.

Figure-7-2h indicates the region whose area is sought (The points of inter-

section .are found by solving x24F 6x +. 7 = -x2 + 73c - 11 for x).

A

f(x) = x2 - 6x + 7

9 12,)

" 8( ) -x2 + 7x -

Figure 7-2h

A and B are, respectively, the minimum of f and

maximum of g, while C and D are the points Of.

intersection.
567
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At this early °stage in our development we solve this problem by using

formulas .(2) and (3)-and various area principles. First we choose new axes

so our curves will be in the first quadrant and our integrals can be taken
s

with lower limit 0. One way to do this is to choose our vertical axis ;through

C and horizontal axis through A. (See Figure 7-2h.) Call these the s and

t axes, respectively. Thus,

s = y + 2,

t = x - 2,

y = s - 2;

x.= t + 2.

(
For the graphs of f and g we obtain the new equations

s - 2.= (t + )2 - 6(t + 2).+ 7

.

.

'2., -(t + 2r + 7(t ± 2) - 11,

which are respectively

s = t2 - 1 and s = t
2

+ 3t + 1.

Our desired area is the difference of the areas,of the shaded regions shown

in Figure 7-2i.

Figure 7-2i

The negative signs in, these expressions causes some difficultie( in calculat-

ing the desired areas. We could resort to approximations by upper and lower

sums (that is, use the formula of Exercises 7-1, No. 6). Instead, let us

continue using area principles to reduce our problem to.the known integral

forms of (2) and (3). First we find the area of a. We replace s by -s

to .obtain (a reflection in' the t-axis) the graph of s = t
2

- 3t - 1

(Figure .7- 2,j),.
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r.

a

Figure 7-2k

Now replace s by s.- 9 -(which Shiftslithe graph 9 .units. upward) to obtain

s = t
2

- 3t + 8 (Figure 7-2k).

The area of a is then the same as the area of the shaded region of Figure

7-2k, and we have

area of a = 9 x s, where
0

Thus, the additivity principle (10) can, be applied to obtain

-3t+

where

area pf.a
45

t
2

an

5/2

5

/2

s1+ 0

s2 = -3tt

52)

, 5since each of these functions is nonnegative for 0 < t < and + s2.

i

2

6,
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so that

(from (3))

or
5/2

2
2(2)2

2
8(2 )

( fIZO In ( 2 ) )

.
.

45 ,125 A53.-)

3
N 20

area of a = 7

A similar calculation gives

area of
35

where is the second region Of Figure 7=2i. The area which we seek is

4- area of a -.area of 8
125
77

.In Section 7-5 we shall develop_methods

siderably.

57b
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Exercises' 7-2

1. Suppose f x -4 x2, g x 2x +

(a), Graph each.

2b) Show that f(x) < g(x). for < x < 3.

If

3 3.
(c) Show that f < .g..

2. Over the indicated interval for the folloiing functions: graph .the func-

tion; find the maximum (M) value of the function; find the minimum (m)

value of the function; and, using these, express.with4an inequality the

lower and upper bounds of the integral expression for the area. [Hint::

See Figure 7-2c..1

(a) f. :)K -) x + 1,. 0 < x < 1

2
(b) f : x -)x - 2x + 3i 0 < x <

For f : x -43x - and 'g,= f find fr g and verify that

5 5

10
g =

5 5

4. For f : x -4-2x + 20 and g x -4-2(x - h).-+ 20.

(a) Find a suitable translation such that f(3) ='g(0) and f(7) = g(4)".

Graph' f and g.

3 4 7

(b) Find g, f and verify that 1:7-f =0.c3 f

0, : 0 0 0 ' 0

7 3, 7
. Thus f = f + f.

Jo j3.o

5. For f x.-)3x. 5, g x .--)x and h : x -41 verify that

f = 3 J. g + 5 by using (1) and -(2) tp find each integral;
a a a
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6. Find each of the following integrals .after first graphing the given

function over the interval:,

.1
(a)

1

3
x!
2

+ x

4

(b) x2 4x + 5

t 1

(c)

3
-x2 + 2x + 3

1

4
x2 17

2

x

7. Suppose f x --3px
2

+ qx + r where p, q and r .are nonnegative

constants.
7

(a) ,Put F : x -)2- x
9. x2

+ rx and show .that Ft -= f.

3

(b) Show that if 0 <tailcb then

8.

(Hint:
'fa

%to

In Exercises 7-1, Number 2 it was shown that for

f .f(b) -F
a

a

0 f)0

)

0

1 for x.> 0.

: x x3

Supposel g : x -*px3 + qx
2

+ rx + 1.7- where p, q, and arl,.nonnega-.

tive constants. Suppose also teat

G : x x
4 a

+ x
3 ± 7 x

2
t sx:

(a) Show that Gt = g.
b

(b) Show that if 0 <a. < b then g = G(b) G(a).

a

fb

9. In Number 7 put -0(x) = F(x) -I- 1000 and show that
J

f = G(b) - G(a).
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10. .Find-
5

f whare f : x - 21.

. 0.

(Hint: A graph is, of course, helpful.)

73

11. Tor f x -3x
2

, show'sRbw to find f.

-1C

(Hint: 'Translateoalong the x-axis using g(x)_= f(x - h) for some

12. Verify that Number 7(b) still holdet4 a < b < 0 or if a < 0 < b.

(Hint: Vse a translation.)

13. Suppose a < c < b and that

=

h(x), a < x < c
f(x)

0 , c < x <b

0 ,a<x< c
g(x) =

h(x), c < x < b

Show that f + g = h and use this to show that (9) is a consequence of

(10).

14. Find the area and graph of the region bounded by f(x). =-y = 2(x.- 5)2 - 2

and y = O. (Hint: Translate and graph the area into the firstr
quadrant.)

15.' Find the area of the region bounded by f(x) = y =-(x + 1)2 + 1 and

g(x) = y = x.

16. 'Suppose A(x) = f, where f is nonnegative. Show that if .$

a

a < x
1

< x2 then A(xl

573
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.Exercis'es. 7-2

1. Find the area of the regions represented by the follOwing integrals;

where f x x3 .

(a) A(3) = 1-3:f
0

(b) A(2) 4 *f

0

1-3
(c) Find the area represented by f by use of the relationship,'

2

3 3
2.

f f - f

2 0 0

2. (a) By dividing the interval into appropriate subintervals, find the area

over the interval x = 0 to,x = 2 under the graph of the function

f : lx - 11

by use -of integration.

(b) Sketch the graph and check your" solution to part (a) by geometry.

(a) Find k(2) if f : x -)x
4

.

(b) Using Formula (8), find the.ared, over the same interval, undL.

the graph of the following functions:

(i) x --->
1 4.

(iii) x 5x
4

(ii)
1 4

x 7 x ( iv) x ->10x

Over the indicated interval for the following functions: find the

maximum (M) -value of the ftinction; find the minimum (m) value

the function; and; using :these, express with an inequality the lower

-and upper bounds of the integral expression for the area..

71T.t177:- See Figure 7-2c.]

a) x ) x . + 1 , < x < 1

. (b) f : x -)x2. 2x + 3, 0 < x

Given: f t x --> cos x, 'where 0 f x <
- 2 '

function A x x, where 0< x<

. (a) Find the area of the region

. coordinate axes.

and the corresponding area

boUnded by the graph of .f, and the

574
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:.(b) What valae of, a will make the vertical line x a divide this.'

region into two equal p6rts?

(c) If this region. (of part (a)) is divided into three regions of equal

area.by vertical lines,, what are the equations of hese lines?

575
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7-3. The Fundamental Theorem of Calculus

In Section 7-1 we found some formulas for the a ea of the region in the

first quadrant boun d by the graph of a function f, the x-axis, the'y-axis

and a second verti al line, x units to the right o the origin, such as that

shown in Figure 7-

if

x

Figure 7-3a /11

Area Under 'a Graph

x

4

Calling the indicated area A(x) 'we obtained a function x -,A(x), which

we called:the "area function." Using the integral notation we have

The

x

A(x) = f.

0

results obtained in Section 7-1 can be tabulated as follows:

Function

f

Area function

A

Derivative of area functiOn

A'

X -4 cx
2

mx
x + bx

x3

3

It 'is impossible to miss the similarity between the first and third

columns of this table. Since these two columns are identical except for

heading we are practically compelled to suspect that there must be some rela-

tionship between f and the derivative A' of its area function A. 'We con-

.jecture:

(1)
If A is the area function associated with a function

,

then A' = f.
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In order to-'establish this_result we need some, conditions on the function

f. Let us pi.ove this with the following assumptions on. f:

(a) f is an increasing function; that is,,

(2.) f(c) < f(d) if 0 <'c < d,

(b) the graph of t has no "gaps".for x > O.

These two conditions imply

If x > 0 and c is close enough to x then

f(c) is close to f(x).

This result will be established in the appendices. As it seems plausible we

shall assume.it to be true at this point. (The same assumption was used for

x in the discussions of Section 6-7).
/

In order toprOve(1) we wish to show that if is small then

( 3)

A(x. + h) - A(x) .= r(i);
h

that is, the slope of the line connecting P(x,A(x)) to Q(x + h, A(x + h)),

approximates f(x) for Ihl small. Since this slope will also approximate
-P

Al(x), the slope of the, tangent line at P(x,A(x)), we shall then know that

A'(x) = f(x). (See Figure 7-3b.) ".

"=. AW,

the slope of the tangent
at .P is approximated by

'the. slope of PQ
.

x x +

Figure 7-3b

Graph of the Area Function

Let".us first suppose that h > 0, so that the graph.of f is something

like thatshown. in Figure 7-3c. The two quantities A(x) and A(x + h) are

.
the areas of the regions,bounded by-the y-axis,the x -axis, the graph of ft

and the vertical lines which are respectively x and ,x + h' units to the
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right of the origin. .Hence. the difference

A(x h) - i(x)

represents the area of the shaded region shoWn in Figure 7-3c.

y f

,

A

-.Figure 7.-lc

x + h) -A(x) = Area of the shaded region .

.10

Since we have assumed that p is increasing, the -shaded.region of Figure

7-3c includes.the smaller rectangle TUWV and is included in the.larger

tangle RSWV. These rectangles have base length h and the reepectlVe heights'-

f(x) and f(x + h)...Thus

hf(x) < area of shaded region < hf(x R+ h);

- that is,

hf(x) < A(x1 h) - .,16) < hf(x + h).

This inequality used the asst ion that h > 0. If we divide.by E we obtain

h) - A(x)* '

(4), f(x) <
11

f(x +

Here is where we use (3), for if h is small; then ir+ h is'close to x so

that f(x + II) is clOse to f(x). Hence,'if h is small,and positi;re then

A(x + - A(x) i(x).,

h ,

.Comparable arguments will give the same result:if h.< 0, so that, indeed

Al = f, the ase6tions (2) hold. We can, of course, replace the assump-

tion that 'f' is increasing by the assumption that f isdecreasing. This

will invert the inequality signa'in (4) but not change. the conclUsiOn.

In the above proof we used the fact that

A(x + h) - A(x):
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is the area of the shaded region sho n in Figure 7-3c. This will also be true

if the lower limitis taken to be any n ber a < x. In other words, if we

Put

x .

A(x) = f, x > a.
.

a

This represents the area of the shaded region shown in.Figure '7-3d.

ference

The--

Figure

will be. the area of the darkly shaded region shOWn in Figure 7-3e. .

AssUMing that f is increasing for x > a we could repeat the foregoing

arguments to conclude that

and

,

A( + h) -.A(x) < f(x + h h >0

A(x + h)h - A(x)
h), if h ;<. 0.,

.If we assume that the graph of f has no "gaps" we thus arrive at the result

-A(x + h) - A(x) p f(x) if 'hi
h

is smal,

and hence conclude that A * .= f.

This fact that the derivative of the area:function is f will be referred

to as-the Area Theorem.

.
2-4--'^*:

. r

This is also sometimes known as the FundaM ntal Theorem of Calculus, a .

subsequent' theorem Which can be established analytically without area arguments.
-

^111...
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'AREA THEOREM.' Suppose f is nonnegatiye and increasing. on tbe,interVal

e < x <b and that the graph of. f has no "gape."' For each. x in

this interval, if we put

then

A(x) f,

a

At(x) = f(x)..

The same result will hold if f is assumed td:be decreasing on the

interval. In the appendices it will be shown that the theorem remains true

if only the'continuity condition (3) holds.

:The:Area'Theorem doesn't yet tell:us how to find the area function

x --*A(x)). it only tells us that the derivative At must be f. Consider,

for example, the problqm of finding the area function

(5) . A(.x) = f,

0

We know that th2 derivative of .

for f : x x3.

x

is the functiOn x.--)4x3, so if we divide by 4 .then the derivative of

e 1 4
x x is x -4 X .

.:'Thus .a good candiAlate for .A is

A : x 1 x4.

Note;, howeVer, that the derivative of
d.

is

416. 1 47 x +10

is also x >x3 In,fact, if C is any constant then the derivative of

1 x4 +C is X (3,

4.1 4
sc that any function of trie type x x. + C is El candidate for A. For-

tunately, there are no Other...possibilities. for. A. This is a consequence of

the following theorem.
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. THE CONSTANT DIkkERENCE THEOREM!: If, G' (x) = F' (x) a < x"< b,. then there

is a constant C such that

G(x) = F(x) + C, a < x <

Proof. A rigorous proof ofthis!result is surprisingly complicated, making

use of the fact that the real" line has no "gaps." .(See the. appendices.) We

give here an intuitive argument.

Put C = G(a) so.that the graphs.°Of y = G(x) and y = F(x) are

C units apart at the point where x = a. Since G' = each graph is

rising (or.falling) at the same rate at each point and hence the two graphs

must remain C units aPart!(see Figure 7-3f); that is,

G(x) = F(x) + C for a < x <

Consider again the problem. of finding the area function of (5); that it,

c.

x

A(x) = . f, where f .: x -4 x3.*

0

We noted that if F :x-4 7x, then F' = f. Furthermore, the:Area

Theorem' tells us that Al = f. Therefore, the Constant Difference Theorem

tells us that there must,be a'constant C such that

A(X) = F(x) C.

.*.
For ease of reference we have giVen thiS commonly untitled result a

name.



To determine C, we need only calculate A(x) and F(x) for one value

of x, say .x , ; A(0)= F(0) + C, so C = A(0) - F(0). Recall that

A(0) = f = O.
Co

(See (7) of Section 7-2.) Note that r(0) = 0. It must, therefore, be true

C = 0, so that .A and ..F are the'same function; that is:

p

if f : x

.

0

The following theorem summarizes this method for finding area functiOns.

This theorem is generally referred to as the Fundamental Theorem of Calculus ,
7

and provides a ba.5ic technique for calculating areas by using antiderivatives.

1 14-

then =

O

THE FUNDAMENTAL THEOREM OF CALCULUS. If, f is nohnegatie, increasing and

its graph has no gaps on the interval a < x <"b,- and'if F is any

function whose derivative is f on this interl:ral', then

f = F(x) F(e),
a

PrOof. The area fUnction

A(x) -
Jx

.f

a

is a function'whOse derivative is

A(a) = 0 so that

a <x <b.

(froin the AreaTheorem). Furthermorei

f =-Trt7) A(a) .

Jxa

The idea now is to show that if F'.= f, then

.F(x) - F(a) = A(x) - A(a).

-Since the functions F and A have the same derivative f the Constant

Difference Theorem implies that there is a constant C such that

A(x) = F(x) + C, a < x < b.

Itrelates differentiation nd integration.

".
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A simple calculation then gives

A(x) - A(a). = (F(x) + C) (F(44- C)

= F(x) - F(a).

Thus we indeed have,-4

x

F(x) - F(a) = A(x) - A(a) = f.

a

Remark. This theorem will still be true if f is assumed to be decrees-

ng on .the interval, for the Area Theorem will remain true and the above probf

can be repeated verheim. The theorem is easily extended to the case when the

interval can be subdivided into amaller intervals, on each of which f increa-

ses or,decreases. For example, suppose that F' = f and that f 'increases

'for < x < c and decreases for m <x < b. ..(Bee Figure 7-3g.) Now recall,

that

a

f = f + f'

a

and 'apply. the 'Fundamental Theorem to each term to ob

Y

When we add the two integrals the term F(c)

= F(c) - F(a)7 f = F(b) - F(c)

a

b

c

We have

drops out.

c

b.
f = F(c) ( ) + F(b) .- F(c)

a

= F(b) - F(a).

Figure 7-3g

Area of Shaded Region = Area of A Area of B

58.3-
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Example 1.1261. Find A(x) = k f, where f : x --> ex.

0

We know that f' = f. The Fundamental Theorem then. gives:

I

(x) =

x

f = f(x) - f(0)
0

e
x

- e
0

=ex -T.

p

X.

Example 7 -3b.. Find A(x) = f, x >x4.
2

The derivative of x -ox5 is x --'5x4 so that the derivative of

x -0 5 x
5 is .f x -->x4..I.

The Fundamental Theorem gives:

A(x)

Example 7-3c. Find

= F(x) - F(2) = 5
5

x
5 32

-

2

where f x -0 cos x.

The sine function F -osnx is a function whose derivative is f.

The interval can be subdivid d in :two. subintervals (namely -
2
- < x < 0

and 0 < x < so that. f increases on the fist subinterval and decreases

on the second interval (see Figure 7 -3h). We can; therefore, apply the remark

following Fundamental Theorem to conclude that

f =
-g/2

= sin g - sin(- It)
2

= 1 - (-1)

= 2.-
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Figure 7-3h
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44=za 'EXercises.7-3

1. In Section 7-1 we obtained the estimates

x3 x3. x3 x3
X3 X 3

3 2n + <A(x) <
6n2

3 2n 2
6n-

for each. positive integer n, where

x
A(x) = f; f :

0

Average these to obtain the general estimate

Y3 Y3.A(x) +

3 6n2

Use this estimate for A(x) An order to calculate.approximations of the

followin& quantities when n = 10.

(a) A(2)

(b) A(2.1)

A(2.1) - A(2)
. 0.1

(d)
A(x h) - A(x)

'h
for general.positive x, h.

(e) Let h approach -0 in (d) and use this to estimate At(x).

2. :Suppose , is increasing and nonnegative for a < x < b. Show that

(c) you need to calculate

Explain,

1+h
f in order to answer (a) and (b)?

.
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x
4. Suppose F(x) = f, where f : x -4x3

2

(a) What is F(2,)?

(b) ..What is F2 (3)? )

(c) Did you need to find an antiderivative for f in order to answer

(a) or (b)?

. Find the derivative of each of the following functions F.

.cx(a) F(x) = f, x > -1; f : x -->xli. + x2 or

-1
x.

(b) F(x) f, x > -100x; f : x -$sin3 x
-10.07(

x

5/2

F(x) =cXf x> 0; f x -4 x100

(c) F(x) = >i
esin x

6. Suppose f :

1
and

x x
F(x) = .c f, x > 1; G(x) = .' f, _> 2

1 2

(a) What is F(1)? G(2)? ti

-Y (b) What is Fi(x) - G1(x), x >2?

2

(c) rr a f, what is 'F(x) - G(x) equal to for x > 2?

1

7. Find f' and g' when

(a) f -*x2 - x + 3

(b) g : x x2 - x + 18

104

(c) What is the relationship between your answers to (a) and (b)? Why?

8.. Find two distinct functions g. such that g' is the function x 3x
2.

How are your functions related to each other?



9 Find'the area bounded by the coordinate axes, the line x = 2,1 and the).

graph of the function f, where

(a) f.:
2

,(b) 'f ;,x :-)2x +

(c) f : --;4x3 + x

Sketch the graph of f x x2 4- 1.

Mark the region bounded by this graph, the coordinate axes, and the

line x = 1.. Find the area othis region.

Markthe region bounded by your graph, the coordinate axes, and.the

line x = 2. Find the area of this region.

Mark the region bounded by your graph, the x-axis, and the lines

x = 1 and x = 2. How is this region related to the regions you ,

marked in (b) and (c)? Find its area.

Sketch the graph

f x 16 - x2,

Sketch the graph

f x --94x3 - x,

and find the area bounded by the graph of

the x-axis, and lines x = 2 and x= 3.

and., find the areabounded by the graph of

the x-axis, and the lines x = 1 and x = 2.

12. For.each of the following functions f find a function F such that

Ft.. f. Then use the Fundamental ''theorem to evaluate the given integral.

(You will need

struct F).

(a) x xx6,

to recall your differentiation formulas in order to con-

(b) x -4
6

x +

3

X,

1
(c) f : x

x

(

4

(d) f :
-4

ix-

1.

2

13. For f : - 1)2

so that on each

Give a sketch.

a

(e) f :.x ex,

f (f)

(g)
0.

x e
x

f : x sin x,

f (h) f 2x,

show how the interval 0 < x < 3 can be subdivided

subinterval f is always increasing or always decreasing.
0

f

0

f

-5

0

-5

f

3 0

7r/2

f

0
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lilt For the function of Number 11.1,

(find F so. that FT = f

Cl 3 3

(b) find f and f by using the Fundamental Theorem.
0 31

15: (a) Find two different functions g such that gt = f, -where

f X .-46x
2

+ 2, and for each of them find the'value_nf

13(2) .- g(0).

(b) What is the area bounded by the coordinate axes, the graph of

f : x +2, and the line x = 2?

16. (a) Find two:different functions g such that gt =.f where

f : x -) 4X + 3, and for each of them find the value of g(2) - g(1). .

(b) What is the area bounded'by the graph of f x .7*4x + 3, the

x-axis; and the lines = 1 and x = 2?

17. If g and h are two different functions such that gt = ht, what is

the relation between the number g(5) g(3) and the number

h(5) h( 3) ?

18 Find a function ..F such that f' : x -4x3 - x
2

and F(0) =

How many such functions are there?

19. Find a function: G such that Gt x 4x3 -
x2

an G(0).= 1.

'(Hint: How will; G be related to the function F of N5.18?)

x

20. Suppose f is nonnegative and increasing, that A(x) f and that.

a

< d.

baJ

c+d 2

(Hint: Graph the areas and write A
2

j A(c) +
c

c + d.

and use No. 2.)

(b) Show that. A(c, d) < A(d) (

d c)f(c + d)

that
+ d) <A(c)

2

+ A(0)
(c) .Deduce from (a) and (b) that A(c

2
d)

-
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7-4. Calculating Areas

Suppose we wish to find

c.a f;.

thateis, the area of the shaded region shown in Figure 7-4a.

Figure 7-4a

f

b

Area of Shaded Regiori = f

a

The Fundamental Theorem of Calculus gives us a means for doing this.

Suppose F is a function whose derivative is f. The Fundamental Theorem then

tells us that

f = F(b) - F(a)
a

.

(Of course, we are assuming that f satisfies the conditions of the Fundamen-

tal'Theorem,-or the remark following the theorem.)

In this section we shall introduce some further notation which.is useful

in.finding areas and indicate.Some of the ways we can use (1). A more.systeM-

atic discussion of the use of (1) will be given in Section 7-6.

It is Convenient to have a notation for the integral in terms of -the

expressions used in defining thefunction',-.7f. A common' notation for

f is f(x)dx.
b b-

The symbol !dx" is a single symbol, meant to indiCate that f is to be

taken as a function of x.' For example,

590-



(2)

'.1. 1) .

x
2

dx, means b f, where f : x -'x2.

a a

Of course, the letter x used in f : x -4x
2 is a "dummy" letter. Any,/

other Letter not. already in use will do just as well. Thus, we could write f

as

f : t -,t or

In these cases we would write (2) as

b
t2t dt or

b
2

A function F whose derivative is f is often called an antiderivative

(or indefinite integral) of f. It is also common to use the notation

b

F(x) 1 for F(b) - F(a).

a

The Fundamental Theorem of Calculus is often stated in the'form:.

(3)

b
f(x)dx = F(x). Ib = F(b) - F(a),

a

where F is an antiderivatiVe of f.

For example, since the derivative of

we say that x
1
x

3.

1
x

3
x
3

is x -,x,.
2

is an antiderivative of x -)x

b b 3 3

X2 dx = 1 x3 ,\ = b3- 7
a a

591
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4

Example 7-4a. Find t5 dt
1

First we find qn'antiderivative of t Differentiation'of polynom-

ials reduces degree by one, so antidifterentiation should raise degree by .one.

If we recall that the, function

t t
6

has derivative t -4 6t5, we can see that a

1 6

is the antiderivative of t -,t 5 . Therefore, we have

t5, t6dt g t
1

4. Example 7-4b. Find the area of the region between the-Ir=axis and one

arch'of the sine curve given by. y =, sin x. 'We want to find (Figure 7-4b)'.

4 6
16-4 1 4095

Figure 7-4b

sin x dx = area of"shaded regron..
0

The derivative pf the cosine fundtiO.n. is the negative ofthe sine func-
,

. tion so that



1 7

is an antiderivative of x.-, sin x; We have.

tin

c
sin x dx = -cos x = -cos n + 'cos 0

0

'= -(-1 ) +.1 ,= 2.

3
Example 7-4 Find (x2 + 2x + 14)dx.

. We coqld-find an antiderivagv.e.of

x -) x + 2x + 4

directly and use (3)..' Analeernative aptroach (which amounts to the same.

thing) is to remember that the integral of a sum is the sum of the integrals,

so that- we can write

.(x7,+ 2x. + 4)d). .:; = Qx2dx.+
c

3' 2

..' a'.o
2x dx + . 1.4dx.

r 0

° 2
x '=> x , x

have the respective antidexivativ

8o we have

3.

x end x -) 14
ded

x2 4+2x
.4 3

14)dX T. I X' Xi

=3(3;(33 03.) 4-
3

= 3o.

32
. 2 ,3. - ) 3 - 11:',0)

Example 7 -4L Describe the area of the region .between the graphs of

Y =. & and y = W as the difference of two. integrals and evaluate.



the arep of region .4 in Bigure 7-4b

1 1

dx r VT/z. dx*.

' t)

Area of A =' Area of B - Area of C

To find antideri e of x -) ix and x we first write

1/2
= x

1 3
and I = x and then recall the power formula

6-1
Dx ax

Differentiation amounts to m
1

ltiplying by -the exponent and xeducing the ex-

. .
Ponent by 1. As was the case with our polynomial (Examp10, 7-)4c), anti-

differentiation amounts to at ising the exponent by 1 and dniding by the new
.

I**
....

exponent. Thus, we have
W

.

4/3
and x

2 3/2
x x x

3 A

as' respective antiderivatives of x 3 i-c and x -)47. Therefore, our

desired area is

1.

3,/x dx dx = x

0 0

2 _3/2 1

0

is



In. Figure 7-4c we indicate. (by shading) the region whose area is the

integral we wish to evaluate.'

.Figure 7-4c

We know that the area of region B is 2 (from Example 7-4b) and we

should suspect that the total area of regions A and B is 3. We can con-

. firm this suspicion and. ain additional experience using antiderivatives. By

definition of absolute value we have

we express

(4)

sin x, for in x > 0

'sin xl

=sin x, for sin x. < 0 .

our integral ag, the sum of two integrals:

Isin xldx =

110-7r/

'sin xldx sin xldx
0

The antiderivatives of

are, respectively,

Therefore, we have

s.

a.

0

)C'

y

-sin x)dx + sin x dx.,
0

x -4 -sin x and x -4 sin x

x -4 cos x 'and x -4-cos x.

0
sin x dx' = cos x + (-cos

dos 0 -cos( - (-cos lc ) - (-cos 0)

1 - ( -( -1)) ( -1)

= 3.
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2

pcaMple 7-4f. Evaluate f(x)dx if

0.

f(x) = 1/37
.2'

for .0 < ?c <1

(2x - ) , for 1 < x < 2

Figure 7-4d is given by' the integral weThe area of the shaded 'region in

wish to evaluate. Note the break. in

the graph of f at x = 1. In order

to be able to apply the Fundamental

Theorem of Calculus, ye first bieak

our interval into subinteriols over

which the graph of f 'has no gaps::

0 1

2's f 1 2

f(x)dx = - lq)7 dx + (2x -

I.

Antiderivatives . for:. x 15 and

x --) (2x - 1).. are respectively
.

213-
x
3

and x
. i 1. 1)3.

3 3

y

(Check by differentiation -and see .

Exercises. 74., No. 5); We, therefore;

have

6 3 0 . °6

(2x -..1)
2

1
:.-.. f (''x) dx = 2'1.' ;;3 2

,
.21.3)/2 63/2) +x(33 -13)

3

2 +

3 : re 7.7/14

a.



O
Exercises 7-4

L Find each of the, following. integrals.

(a)
2,

+ 3)dx (j) x dx
1

-2, -1:
..,,,.,(b)

Co
(x2, +.x 3)dx (k)

2 3'c

e dx.

,. ..

(c) (x + x + dx (4) (ex + 1)dx

cos x dx .(m)
(ex + x)dx

d -1 ,

ni3

,fix'

...(

dx (n) (5x
4'

+ ;3x2 + 1)dx
0 1

_ .

4,
(J + &)dx (o) I v/3(f) (sin + COS x)dx

1/16 Fr/6

(p) (e + sin x)dx
i

dx
1

(gT': I 1/2 3x2 0

-2

(q) :( (x2 + 2x + 5dx
-1

h) (5X- + 5c2)dx f Y

(1)

2
1
dx (r)

_ 10
x3 ex arctan (sing x)dx

11 .x . 10

Sketch the regions bounded by thb x-axis, the curve y = f(x) and the

vertical lines x = a and x'= b. Then find the areas

(a) f : x x3 + 2x + 1,

(b) f x -4 ex, a = -1,

(c) f : x ex + x2, a =

(d) f : x sin x + cos x,

(e) f .:, x --) 2x
4
+ cos x,

10
. (f) f : x'-)x , a = -1,

..,

(g) f : x --) 3147, a = -1,

a = 1, b, 3

b = 1

- , b =

0, b =

b =

11/1 1

b =
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3. Sketch the region bounded by the x-axis, y = f(x) and the given

vertical lines; then find its area.

(

(a) f:x--) lx1; vertical lines .x = -2, x=4

(CheCk your result by elementary. geometry,).

(b) f x I4x3 I; vertical lines at x = -1, x .3

43

(d)

f xN4 !cos vertical lines at x = x =
43

(d) f : x -) I 221 - sin xl; verti al lines at x = -n, x = 2n

(e) 'f : x --) 11 vertical lines at x = 0, x = 4

4. (a) Evaluate (x2 + 31G) 1 and (x2 31/X. + 50)

1

(b) Suppose 'F(x) G(x) + nloge (arctan

1

,Find G(x) I

1

7) where F(0) = 1, F(1). -

(c) Whattis F(x)
a

if 1" = G'7-

a ,

5. a.
Find an'antider14ativeor each .of the following functions.

f : x -)Zx.-

el

(ii) F : x ->x3 - 3x
2

+- 3x

(iii) g : x --)8x3 - 12x2,+ 6x - 1

(iv) G : x - 1)3

[Hint: Try to put G in the form a(x - b)11.]

(p) Compare the functions 'F with f and G with g. Compare the

antiderivative,s.

6. rind an antiderivative for each of the following functions

f x -)8(x + 1) 3

g x (2x + 2)3.

7. Find .(3x + 4)5 dx

I
0

(a) by first carrying out,,the indicated multiplication,

(;b) ..by using the method found in Number 6.
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8. Which of the following integrals are the sae as
fb

t 3

b

(a) y3 dy
a

b
(b), y3 dt

a
e4

9. Evaluate the following integrals usihg a line of symmetrV,..ap.prc5isi.iatc7:-...:

0 0
3

3 3 2 2 3
to the problem. [e.g., x2 dx = dx = x

(a)

-7c/6

2

-2

2

(o

cos x dx

0

10. Find ti,& area of the region boiinded:,1)y:the giyetUr7;lea,

y = f(x) , and the given vertical likes. (Sketah.,fiat;)

(a)
3

x < 0 .

A 3

x -4' + 2, . 0 4 ){, <

X X ik

(b)

vertii&11,'§_.inps:34t, .

14 T 3( b < < 3

-

kx + if

7 or

In Problems 11-12 :deducQ part

each first.)

11. (a) .(i) Find. ,

(b) Find the a,pea of the: region WoUridealS0174tY:

by y = x to the:le4 vqrticai:Xifie:
.

right by the -Vertical.. he' x :1..



..2-0
12. (a) ( ) Find (8'- x2)dx; (ii) x2 x

(b) Find the area of the region bounded by y = 8 - x2 and y`= x2.

13; (a) Find the solution of Number 11(b) directly without using part (a)

of Number 11.

0

(b) Find the solution of Number 12(b) directly without using part (a)

of Number 12.

Find the area -bounded by y. = sin'x, y = cos x, x = 0, and x = .

(Sketch first.)
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7-5. Signed Area

Until now we-have discussed the integral f or
a

f(x)dx only

in cases for which a < b and the interval from a to b could be subdivided

so that .in each subinterval the function.' f as nonnegative, always increast5hg.

(or always decreasing) and its graph had no gaps. We now extend our discussion

to include situations for which a > b or for which the graph of f may con-

-tain portions belOy.the x-axis, preserving, if possible, the result

b f(x)dx = F(b)-- F(a) if Ft =
a

A

b

3'-This can be accomplished by suitably interpreting f(x)dx
a

as signed area..

First consider the case for which f is nonpositiveon the interval;

.a < x < = f. In this case -f is nonnegative and has antieriVa'-.

tive -F, so that

(1)

a

-f(x)dx = -F(x)
b

=.7p(b) + F(6).
a

This can be interpreted as'Abe area of ,theshaded.region.of Figure Note,

that this is the same.as the'ava of the shaded region-of Figure 7-5a.

If the FundaMental.TheOrem. is to hold we should have-
%

1.

f(x)dx ='F(b) - F(a)..
: a

b I

Referring to (1), we see that this requires that

f(x)dx 7 - r-f(x)1dx;
a a
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b

that is f(x)dx' must be defined as the negative of :the area of the shaded

c a

region of.Fignre 7-5a.

Figure.7-59

Now suppose the graphof f looks like that shown in Figure 7-5c and

that F is an antiderivative of f. We have +.

=f(x)

ti

Now note that

c
1

area of Al =
J

f(x)dx.= F(cl) - F(a)

.c f(x)dxe2area of A
2

= =:i(c

area of A
3

=

Cl

b
(x)dx F(b) F(c

c2

F(b) - F(a) = F(b) - F(ci) + F (ci) - F(c2) + F(c2) F(P)

= [F(ci) - F(a)] - [F(cil F(c2)1 [F(b) F(c2)]

(area of A1)7 (area c A2),_+ (area A3).

In other words, if we wish.

to be F(b) - F(a)

a

then we must have

(area.of - (area of Ads + a'rea of A

6o2
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(2)

In summary, if a < b,, F' = f. and if we define

f

b
.,,f(x)dx = F(b) - Pttl,

a

f by

then f will bathe total area Of the regions bounded by the graph of f
a

which lie above the interval minus the total area of the regions bounded bye,

e graph of f which lie below the interval. This is called the-signed

e :'determined by f on the. interval from a to b.

It also common practice to remove the restriction that a < b, by

defining

The fundamental-relation (2) will still hOld, for if -:b-< a and F' = f then .

bt

.1 a

f.= -(F(a) - i(hI

The properties of the syMbol

for signed area:

(3)

(4)

( 5 )

F(b) 7 F(a).

..c

b

f'. discussed in Section J-2 alsO hold

1.

b,

(al) = aJ f, where a is a real number;
a a

rc b
f = 1 Eif + f, where a, bs c re any real numbers°.

. a c

Ndtiees in fact,.that (4) now holds without the restriction that

negative and (5) dOesn't require that a.< ccb.

Of course, if, a < b and f(x).> Q. for a < x < b then

13!(x)dx > 0.
c

One consequence of this is the fact that

603
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b .;-

'.(6) f(x)dx. g(x)dx if -a < x < b and f(x) <7g(x).

a

For.we then have g(x) -:f(x) > , so that

(g(x) - f(x))dx > 0.
a

1-

b

Adding f(x)dx to both sides, we obtain (6).

a

i

II

Example-7-5a.. Find. sin x dx..
-n

u

This integral can be Anterpreted as the signed area of the total shaded

region shown in 'Figure 775d. Since the.regions above and below the x-axis are

,f

Figure 75d

y = sin x

the same, we should expect that the signed area is

(2) should corroborate our eXpeCtation. In this case

F : x -cos x

is an antiderivative so (2) gives

sin x dx = -cos x

The defining relation



Use th:funddmentai.relation (2) to. show that



7
- We .11aVb.

, .

;1:7. \ ,4 '

;,:.4. 0

. The function F : x x - x3" is an antiderivative for
1

3

easily checkedi by showing that .F1 = f). We have

(-f(x) 1Clx = f (x - ljdx =
. -2

..= area of A
-1

, x3

f(x)dx =.

'-Cl-
(1 *-

.

x x - = area of A'
2'

Cl. 1
2

.

'. L-f(;c-Vax ,--c (x- -.1)dx - x

i iss

x3.3

1
:3

= =-. =. area of
20

1 3

A3,

...
0

The fundamental relation (2), gives

3 :
. 4-. f(k)dx = F(3). - F( -2). = x

2 ,

,
which is the same as

-(area of A ) (area of A1 A2

20.

3

'53

ILA,. 20 2

3.
of A )

3;°- 3 .7

Example 7-5c. Find .dx

I

0 ,. 3

x x x dx -

Exampl% 7-5d . Find the area. of the region enclosed by the graphs of th,

txo.functions

rx
f : x - 6x P, 2'

and x -x 4- 7x

(This is the same problem .as Example -2c.) A ,sket,ch of the region whose
,

area is sought'is given'in Figure



We sh'all show that the desired area

9/
)

2:(fi-(
f(x))dx..

First'we note that

g(x)d): (area of Al) -1-(6/7ea of A2) + .(area of A), a,

2;

are the regions indicated in Figure 7.75g.

Figure 7-5g



An we observe that

f(x)dx = -(area of A VO.- (eaof A

where region A is iildidated'in, Figure 7-
:

Subtracting .(8),4rom obtain -

g(x)dx f(x)dx = Tarea A ) + 'area of A

11

which is the area we seek. Since

''j,

we establish that, -, = (g(x) -.1%(x))4

:P .2:. ..., # ,

betNeen the graphs of g and d: f.arlk simple
. .Ir

1 .

...'9./2.

2

.(g(x) - ,f(x a,,.

. ,

2.

.. 9

))44.
*

. ;.4:.

3. 2.
x3. + 2--3-.,1 isk'

. 9/2 '

,..ip g(x)dx4= . f(X)dx*.

2-

.. 2 ,." e:/

ir

- zc

9/2.
f(x))dx,

determinvthe,area of
.f,

ciO.oulatioti now gives

2x2 - 18)dx

127
2

o

0-

the same pitult'as that of Example 7-2c.

the region
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tbcercises

Sketch the graph of the function

. f x -) x2 1, -1 <x <

Evaluate, (x2 - 1)4x.
0

re 0 9
Find the area of the region bounded by the )s-axis.? and the graph

..,

,of the fuhcti , x --).x
2

- 1, between the -vertical lines? Eft,' x =.-p
., .0 -

,,and x =.: 2.
/7-t

,.. .

z . .

q
3..

2. (p); Sitetch the graph of the function;

f -)x
2

1,in,,
(b) Evaluate

.

.

, .

a 3 dx.

1

:)

(c). Find the area of the fegion between the graph of the function,
"1

a

... x --) x3, the x-axis, where Ix I '< 1: .°

re. a. .

Find ib (b Oj , if x
3

dx =--
15-° 1 c2

- 0

x3 dx )Sketch
' 0

. 0 ,,

3. (a) Evaludte

4

(a)

x

1

Eti!..3311.ia t e Ixldx..

-1
. 9

Sketcli and 1.hen

and y'= x.

41 .

find the area bounded. by the %x-Ixis , '1x1 = 1

° .

Sketch, and then find the area bounded by the .x-axia,

and y,--1:4..Y..,.- .,..*

-7`
s,

0
4: "'Sketch: and thep. find the area t,:f the regify bounded 'by the :coordinate ''. :

, ;
v v,

axes and the curve , k.

I I
1

0.t
5.

71y.'a 1.

Can you identify the curve? 4v,..

Sketch and -:then find the area of the region bOnded by x = 4 and
.

2 = y .

-

6. 'Sket.ch and then fi4'dothe areniThf the region bpunded by y = x3, .= _72x
2

between the vertical. lines x .= '0 and x 1.



Find the area of the

in the figure above4

region bounded by y
2

= x and x +'y = 2, indicated

(0° For.the first method divide'the.reciVired region into smaller regions

which,Can.be evaluated asj011ows:

1 2 4 Fs' 4

A = :(470dx (-x +2)4x +]. 7[ -( - ]d - f-(-x +2) lax
.

.

0 - 2

A'=
CAI All

A
III

1 A
I

- ) A
V

]

V

identfy, tills smaller region with their- respective integral's.-

.

(b) Second, try dividing the rehuired region inttdifferent smaller

regions which are evaluated as follows:,

1 12
A. = dx + (-x +-2)dx +, [-(-1.F)]dx

.0' 1 0

A = A
X

+ A
Y

[ A
Z

Identify the smaller regiOns with their respective

° .

(c) 'Show that the expressions of area in part (a) and part (b) may be

'
simplified to the',TolloWing stetement. .

,

c
A = 2* 1.1i'dx + [( -x + 2) + &]dx

0 J .1

Can you poirit out the relationshiprof
this%xpressioNfor the area

. - .

-sand the figure representing the area? 'Could you have arrived at this
..-

expression without going through the smaller sub-regio s of parts'

-(a)'and (b)?

(d) From the expression for the area in part (c) find the area of the

region indicated:in the figurer
,

610



8. (ea) Express an integralrepresent-

in$ the. area of each of the

following regions: (DO NOT
,

EVALUATE.)

(i) Region I: bounded by the

x-axis and

y = 2x - x
2

.

(ii) Region II: bounded by

y = 0, x = -1,

and

y = 2x -

(iii) Region III: bounded by y = 0, x = 3, and 'y = 4 -

(iv) Rq.gipn IV: bounded by y = 0, y = -3, .x = 71, and x = 3.

- .

(b) Combthe.the integrals. of part (a) and show that the area of the
2 r

region bounded by y = 2x - x .and y = -3 can be expressed by

the integral,
.

(c)

9 (a)

A, =

-1

3
(2x 7 x

2
+ 3)dx.

Find the area of the region. described in part (b).

00.

Find the area bounded only by the graphs of the functions

If : x -4,cos x

f : x -4 -sin x
.. .

if x is restricted to the-closed interval -v ifv. Sketch the

curves in this interval.

16,10 (1) Evaluate I 31114 cos x dx.

1

-v/4

(ii) Evaluate. (-sin 'x) x
3v/4

.

-v/4

<

(iii). Evaluate ,(cos x -tin-x)dx.

3S/4

-v/4

.

(iv) Interpret parts 1), (ii), arid. (iii) geometrically.
r.'.

4



10. .(a) Use a geometric arguMen4 to find

a

f if f isan Odd .function (i.e., f(x ) =

a

(b.). Show that f f = 2f f.-tf f is an even. functioni'.a6
-a 0

a a

f( -x) (x))....

.(c) Evaluate .' (x3 .- 3x)sin x2 dx..

,5 1

. 5.. q

.11. Show that if Ft = f;G2= g, and f(x) < g(x)

F(b) - F(a) < G(b) G(a).

b12. Verify (5). (Hint: if = F(b) - F(a).)
a

Ii
13. Suppose F(x) '= I f where f : x -)e .

What is F(l)?

Find an expression for 7(x).

Use part (b) to find F'(x).

In general, uppose -G(x) = g.. Can you find: G!(x).

.,..>';

14. Find the area bounded by the

Sketch.

(b) Find the. area:COUnded by the y-axis and:the

Sketch. (Hint:_ potelanalogy to part (a).)

aiV



7-6. -IntegratiOn Formulas

b

We have seen that-the integral f(x)dx can be valted.
.

a g

find a function F. such that F' = f, for then we have

= F(b) 7- p)

In .genera1. we.find;:antideriYatiYes: )5y one or a. combination of methods.

Method consist of recaliing)''a dif-ferentiation formula, judi.Cious. guess

Ing., or using tables Krf antiYleritatives: ',In this section w.e reyiewsoMeOf.

.-,,..thtqbesp...goiliii408'"..34 4 4,.4%.pre.ir194sly:; giye..:soMe:..additiOnal formulas -and discuss

..::the:.Use.Of..-EbleS.-:..-TechniqUes for extending the- stOpe of our Iformulat.-will

Chapter 9, where we also,; discuss . methods, for obtsining'approxii,'
, .

mate:: valtie ,for .i.titegrelS . 0ther integAtiOn iethodS;.. are dl.S.pUssed In the .

. -
. ..

rnThe :,comMonpotation for ahAt;t1.deriVAtive. of

d,efi-heth a funetiony Dame1,7.;,

symbol

/-4
The, secon

cj

. .

. .

te,present.s a number, which can
. .

,.between -a -And b
e02,i.riterriretted .thec:signed area

-? ;.

:

determined-
,



Integration formulas.are obtained by reversing the differentiatiOn process;

for

For example,

fax)dx = F(x) means that ThF(x) = f(x).

1-ix 2 x = 7 since =
x3 2

Of course, if C is any constant, we ha've

more precisely we have

x3
(

3
C) = x2;

2 x3
x dx --. 3 +1.

In fact, we know from the Constant Differen
.0 6

antideriVatives of x X have the form
V ./

'x
x C , where C ia q constant.

Theorem (Theorem 7-3b) that all

1.

In some books this frict is Vtres'spd by writing

J
f(x)dX, = F(x) f C,(41

where .0 is a constant and Di*;::Y= For convenience we follow the

simple practi.Oe of ignoring thi constant C in our .formulas, each integra-

tiOn formula.giving only one.function whore derivative. is f, others .obtained

by adding constants.to our antiderivativCs,

The Power Formula

Recall that if a .i's any real number then,

4

If a / 0, we can write



o

sathat x x
a is a functiOn whose derivative is x -)xa-1 This tells us'

a

that

x
a-1

x =
1
x
a-,

, if a / 0.

FOr convenience we replace a by p + 1, where p is any real number except

p to obtain the formula.

p+1 .

fxP dx
p + 1 ' P /

In other words, an antiderivative of a power function x.-)xP, .p # -1,'

is obtained by raising the exponent by 1 and dividing by the new exponent.

Suppose p = -1, then our function is x -4 In ,Section ,6-6 we obtained

the - formula

loge. x = x > O.

This 'gives the integration formula

Circular and Exponential Functions

From the fOrmUlas

D sin x =,cos D cOsx = -sin .x,

We obtain the inilgigration foi-mulaN

1

%

cos x ax = sin x; isin x dic = -cos x.

SinCe Dex =-e
x

we have. the formula,

615



. ,

It is asimple matter to extend these:fo7ulas to the case when x

replaced by the linear:expression cx + d. For, example, we know that

so that

If. c

D,sin (cx + a) = c cos ( cx

pi: d)dx = sin XcX

we can w

I
ite

si cos
1

(cx + d)dx = sin (cx

AnalogoUS differentiation formulas were diseussed in Volume One7for Poly-.

nomial, exponential and logarithmicl_functions. In Cllapter 9 we shall discuss

the formulas resulting from nonlinear substitutionS. Here we state the general

result for linear replacements:

if f ..f(x)dx = F(x) and C #.O,

then j'f(Cx + d)dx = F(cx + d).

For easy reference we summarize'current results in Table 7 -6.

Table 7-6

Some Integration Formulas

I'
(1) )(Et dx = a+1

x
a + 1 '

(2) 1
J

x
dx .= loge

x,

(3) ' cos x dx sin

(4)
1 sin x dx =.-cos x

(5 f) ex dx

(6) jf(ax + d)dx =
1
-c- F(cx + d)

616 0
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3/2

Example .7-6a. Find
1

The power .formula (1) , with . a -= -2,' gives

so that

4

Example 7 -6b . Find I dx.

1
The power formula (1) , with a = giyes

so that

Examr;le 7:6c. Find

. .

We have, from (.4) and (3.),.

0
sin x 3 cos 2x)dx.

Isin x .dx = -cos x

Replacing x "by" 2x in the latter

and I cos x dx sin x

and using (6), we have

s\-4 cos 2x dx --- ,-...1. sin 2x.
. .



0.

(sin x 7.3 cos 2x)dx =..J' sin x dx -.3. I'v
0

- ,

:-.... -cos x -'2. tin 2x
2 .

cos

y cos-0] -.4 sin 2y

= -[-1 - 1]

E:Ile 1-6d. Find

We use (5) to obtain'

cos 2x dx

1
2 .e

x
dx.

-1o.

.--10. 2 eX dx =

-1-I

r-1

= e-1 -

."!

Example 7-6e. Find 2x dx.
0

We first convert to base e:.

2x = e
cx

, where c = loge

Now we'use (5) to obtain

We rep).:ate.:,,

3 sin 0]

- [2 0 3 0] 2'
7

x x
e dx 2 e

-10
e- .

-10

e
x dx = e

so that. (6) gives
!'

dx =
1 cx

Converting.to base.

Y-

we. have

J

,, N ,_,X
2X X = k------) e -;

-

e . t.,

618



We can evaluate this integral in two ways. First we expand t6 obtain

+ 1)3 = x3 + 3x2 + '3x + 1,

We apply 'the

0 4 2

(x + 1)3 (357 + x3 +
32 :+ x)

power

0

(x + 1)3 = .(x + 3x + 3x + 1 )dx.

-1

formula (1) to each term to obtain

.11
[0]-;- [1- 1 +.1

Alternatively we can recognize that the. power formulaT (1) gives

fx3 dx t x14,

and the linear substitution formula (6) gives

f(x + )3..4 = i(x +

Therefore, +conclude that

619



Ex121204. Fina:. sin 7rx.dx;

not:'iret ob-tained a"differ ti formula .mhich resulta, in the

square of the sine. function. We us he fact that

-44
'Thus, we have

. 2 cOb-,27rx
sin 7rx

2...

1
sing 7rx .dx =

1 cos 27rx

2. 2 )d*

O

, 1. dx -
2

cos 27cx dX. 0-...\1,..r

0 1.

® To evaluate this econd integral, we ',combine. the 'cosine forthula Z3T with

the linear substitution ,resUlt (6) to obtain
..

a.

-`\

icos(27r. x)dx =

We can write'

=
27

(sin 27r - gin =

Since the-second egral is

Example,7-6h. Show, that 'the area of the shaded region of Figure 7-6a is

twice that of tbe Shaded region of Figure;776b,.



1 4'=X ".

X

-3,4

Figure 7-6a

Let

i x
1

dx and

Formula (2) gives

2:1

X
1

conclude'that

1
dx = log- x,

0,

2

Figs e 776b.

dx. Wewish to%show that
1x.

= log x

x= loge x

%?

=...log 4 - log = lo
.e

ge

a.

= Ioge 2'- log 1. = log '2.
e , e

4 loge '.2 loga
pi e e

TET-,7 loge 2, 7 loge. 2' T, loge .2

The Use of 'Tabl'

A longer tab e of integrals, isAgiven in a separate booklet' (Table 7). As

more diffeentia on methods are dev4opede-stall s how to construct these

tables. .the,follpwing examples make use 'Of-these- tables.



ExaMple 7-6i.

Formula 16 of the table's gi'ves.

.c4Find , xex dx.

' 0

x
dx = xex - ex,

1 ! .1

xe- dx = (xex. -. ex)

0 0

(del
-el)

Oe0 -

= 1.

3X ",7
Example .7-4. Find xe- ax`.

o s

Formu1a°16 Of .the tables gj.yes

3x and use (6) to obtain

.-

ao that

xe dx =- xex We replace x by

11,-

,

; -3x 1 -.

3xe. . dx = xe - e
3x

x e3x dx141--.(3xe

0

ti

1

Example 7:6k. Find log x)dx.

0, e"

47

We use Formula 7 of the booklet tabla: ,4:logo. x dx x .loge
Beplace. X by I +

C( )loge (1 + x dx = x + 1 loge x +

0 IP

,
and use (6) from this chapter to.. obtain,

1, .

1)] ,
0, e

(2 Foge - 2) - log 1

= 2 log 2 -,

622
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1,4

Example 7-62 :Find sin dx.

Formula 28 of the booklet tables giveS thgtN.

Isin x dx =

With = 4; we have

n-1
-sin x cos x - 1----- sin

n n II

4 -sin3 x cos x
sin x dx -

4
sing x d3c.

x dx.

To find thiS second tntegral.we-can use a trigonothetric identity --(as in
.,

EXample 7 -6g) or ma cap ,use i'ormula128 again with n-= 2 to .obtain

faIhrjx
;,":";

-,dx -
2 ,

'..

+
2

1 dx4''.2 ., -sin x cos. 1

Therefore, we have

es .

sj.n
4
.x dx

-sin x cos x
4-* .

2 2

-sin3 x cos x 3 sin x cos x 3x)

4
8

73-1

'

Since sin Ir = sin (-70 0, this 1.5eComes

3x

L 3

10,
-x

Example 7-6m. Find

2

. ,dx.

0
,

2 ...

The tables give no formula? fox e
-x

dx. There is a good reason feu-

.

this: it is known that iher s no elemeptay tunction,whoseltierivati40-AA-' '

2

x -4.e-x 4 64 integrai,.the e,canit be found by usingthe Fundathental 2'

.. (-1.....

TheoremofwetlOulus and we resort to bor*'approxlmation. method in order

to estimateOliS integral'. shall have'More to say about this in Section.

9 -4. :' -



Exercises 7-6

.;t

.

.

For problems 1 -15 fiici the following indefinite integrals.

1. (X2 + 1)dx

1
2. + x + x dx

3.7 81 dx

4. (x2 - i)dX,

.5. 7.x)dx;(1

sin 3x dx
a

cos(2x 7-5)dx

8. f (-sin 2x)dx

> 0) 1 Hint:

9. 1 -cos (3x - 1)ldx

10. 14 cos 3x (Tx

v
q. "- *

\
91/

f
11. . '.2 sin 'x cos x dx 1.0.n.-: Use trigollometeri ntitw]

i
.

12.

1(

siri 2x - 6 cos 3x)dx

e as 2 fractions.]

at+

)1,

13'. i e
x

dx
". -

l'ex/

15. 1-(e° e-. ) dx
x.2

Hint: Remqe pdrenthetis.]

a
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.

For problems 16-25 find the following indefiniteintegrals,,:tusing tables

when

16. x2 21. x4 log
e

x dx

2 NI.
17 x e

I
dx 22. x sin x ax

I* 18 x
4

e
x

dx 23. x3 sin x dx

19. 1 x2 og
e,

x dx V

. 43

dxloge . i;.i20. x3 log_ x dx 25. cps.

i-

For problems 26-31,.sketch a graph of the relevant,. region and fin d; =lue

p the indicated'integral,

I
.-:

24.44e x
sin 4x dx

'.

26. I (x + sin x)dx 2

0

27. (x + sin x)dx
ID

+1 ex 6

dx

Nt,
2

3

. +1 ex
e
-x

2
dx

-1

.

1.

a a
t

sin x dx
0 .

.

e
2 log x

e dx
.4, (

lie
2 lq

, . A .7

For. problemt 32-33; the folloWing instruct are to be foll&ed

substitution: translation). In this section we were givedaharearepres,P60e

by:

, 0

1A
I

(x. + 1)3 dx.

I

By replacement Of x + 1 by, x,

x by x - 1), and by appropriate change

of limits, we find an equivalent expression

for the area. After the linear-substitutio

we' have



that ''they, Eife,^ inaeed,
the same;.

:In :the -koiloliiing" follpwt the forrnat;',ebo:,- ke-tch the aida,"

4ef:ireci.:.1-iy:thq trite'gral.; Make app4opi' tate linear Substitution, sketch the
.equivalent area, and evaluate-,each:'

.32..
(''x' 2)

-
;

33. A.' x(x -
111

For ;:c,L41..bw the pr9bl.ra..: 3.2: .Ond 33, dept:

this case the ffneat' gubsti-tution: is. El,..sdale:.Change.int-tead, of qLt-ranslation

.:Draw two gr&ths :E1.:;trpf ore . . .

:6

dx

i> 35.

Atha f x < .:-.-then

U log (,x) = 1

Sketch f x (.)5), . x > 0

(b) Use.part (a) to fi.nd

s Ord sketch the..ajoi



Can ,you =app5t

do

Use par- :ttoAisCUS's yy4t-;iiirea, if any, you think; shoUld be

assigned'.:tp.V1p74r04::thi::liidlu:ndect by y = , x 0, . the x arid

axes and the,li x = 1.

dYiWhat,answe; sable to you for dx? With

prppertl.q.kp rea yorir^ answer consistent? inconsiStent?:.
-.
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:In volumeone ire, showed that the derivative

also a polynOmial function (of one lower. degree)

of a polynomial function was

and established .the-,formula

D(sin x) = cos x D(Cos'x). = -sin x

D(ex) = ex D(10g. .x) -

D(xa) = ax
0`

These are the basic differentiation formula's./ Our primary purpose'in this

chapter is to.obtain formula6 for.differentiating various algebraic combine,=

tions of these functions and to use tgese derivatives to discuss graphs.and

motion.

The first section of thip chapter is primarily a. review and extension of

tgit'terminology orderivativeS, limits an# approximation to general functions,

as well as,an'ihtroduction to the concept. continuity. Various geometric

properties
J
of graphs of continuous functions are statedin.Section 8-2, making

use of the relationship between differentiation and integration (the Fundamental

Thporem of Calculus) to establish the connection between-.derivatives and the

shape of the graph of a,function.4 Derivatives of sums, multiples °ducts

are'discussed Sections 8-3 and 8-1r Functions wliich are composites a

simpler functions are discussed in Section 8-5 and the important "chain ule"

for differentiating such functions is given irCSection 8-6. Special cases of

A the chain rule, whiqh enable us to differentiate powers, reciprocals and quo-
,

tientp.are described in SectiOns 8-7,and'878. A general,discussion of the

"folding" pcesa used in-Chapters 5.andfi to define and differentiate root

and logarithillic functions is contained in Section 89. These results are

applied, in particular, to the 'inverse trigonometric functions. The final
°

section Of this chapter gives a special technique for74(fferentiating fUnctione

which are defined implicity be relations.

0

0

.
r
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A

8-1. Notation and.Terminology

In this chapter we discuss the properties of variouscombinations of poly-
-

noMial,circular,, exponential and-logarithm:functions. Some common terminology

and notation will be helpful. Some of'what is said here is'a review of'previous

discusSion

Thanotation

f(x - f(.x)
(1) Iim

0 W

pill be used.as' shorthnd for the phrase "the limit of
S.

as h approaches O."

The.function,, f is'said.to be differentiable at x (1)

exists; that.is,.there unique number which ma can approximate as close
, .

f(x + h) - f(x)

h."

as we please by, 'the quatient

f(x + h) - f(x)

if Ihi is small enough. The dei-ivativeis the function which, is defined

for all x for which the limit (1) exists'.61.4whose value fqx) is given by

f(x .+11).,:f(x)
(2) f ( x) = lim

h
h -4 0

Our intuitive discugsion maes use of ellmentary limit principles. A rigorods

discussion of limits is lefOto the appendices.

If f is differentiable at x = a, then the graph of/f has a nonver'ti-

Cal tangent at (a,f(a)), the slope of this tangent being f'(a). The equa-

tion of this tangent line is

y - f(a) f'(a)(x -

If x is close to a, then the values f(x)' will 4cisely approximate the

f(a) +.f'(a)(x - a) along the tandent; thdt la,values

(3).

if .x

f(x) ft(a)(x'

is close to a.

The approximation (3) is n simple rewrite of the+ defini,t:ion of f'(a),'

for (2) . We have'
4tj

f/W, if IhL is small.

630
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If we multiply through by 'la and add f(x) to both sides we .obtain /.

f(x) + fi(x)h, for small [hl.

In the preceding chapters it was shown that'polynomial functions; the

sine and cosine function and the exponential funOtion are differentiable at

each point. Explicit formulas.for the .derivatives of these functions were

obtai -Thejogarithm function x -)log x is defined and differenttEible

only for poitive x.'POwer functions. x -7*x
a

are differentiable for x > 0,

In some cateSEgs

X -.>"X
3/2

(where the exponent is not less than 1) a Bower function may also be:differen-

tiable at x = 0, -while in othr cases,-Such as

1/2
x A x .

'the function will fail to be differentiabler, at x = 0, Functions such as

2/3
x --) x (where the exponent is rational with an odd denominat'cir will also

be differentiable for negative,values* of x.

The square root function

x

fails to be differentiable at x 0 because its graph has .a vertical tangent

line at (0,0).,,A function will also fail to be differentiable at a point

where its. graph ,has: a "corner." Forexample, consider the absolute value

function.

The absolute value Ix is"the larger of the two numbers x and
, .

that

631
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.Figuie

I

It is clear ,fromFigure 8-la' that the absOlute value funttion:is.differen-

tiable.fbr x > 0, where its rivative has the alue. +1;. and for, x < 02.

ere its derivative has the va .Terence quotient at:tx = 0 is

.(4)

The values of
h

10 + , 101 Int
h, h

depend upon the sign of h. If o, then .

while`,tf h < 0, then

Ihi h
=1h

= = -1;
h h

4

a

. . . .

In summary, the quotient (4) is +1 or
.

-1 depending upon whether h > 0

or: h <oi. hence, the difference quotient does'not approximate a unique number'

for Ihl small.

The general.prinqipleis that the limit exists if and only 'tf the left-

hand and right -hand limits exist and are equal. conseqUentIy, in order far ,

) -
the limit

f(x + hh f(x)
(1) to be, the number by when 41,

h is negative'and near zero must be the same as the number approximated by'.

thiS quotient when. .h is positive.andnear zero. As the absolute value flit-ie-
-%

tion illustrates, at a "corner" the-left-hand ar right-hand_limits-will differ,

and the function will fail to be idifferentiabl at the corner point.

it is also possible that a function oscillates to badly 'near a point that

neither the 14ft-hand'nor:the. right-hand litita of (1).will exist.

o .
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In general, we shall use the notation -ft forthe deriVative of a ZUnc--.

tion f. As in the previous- chapters D notation will be used in stating ,

P nnulas. For example, D(sin x) = cos x is a shorthand for the statement

teat the'derivatif:the sinefunctiOn is the cosine function... The notation

has also been introduced for the derivative. This notation is. related to
dx . . , . . .

2. .
. .

the concept of derivative as "rate of change." For if y, = x , then

(:\y = (x + &)2

,

:represents the-.change 4Y in .y due to the change

change in y per. unit change` 41n x is then

.6s2x) - x
2

- 2x + :6x.
a Ox Lx

.011

The average rate of,

As .6x approaches 0 we obtain the value of the derivative of x -)x
2

at

the point x, in this case denoted by

' FIL lim -A- 2x.

Ax
dx

-> 0

4 6 .

et us now Make explicit a concept, which has been iMplicitly used in many

Of our previous discussions. A function T is saithto be continuous at a if

g(p) scidefined and
*ek

240' f(x) = f(a);
x -> a.

.0

that is; the value- f(p)' is approximated- by the values 'f(x) for all x

which are close enoilgh tolik. For example, use has been made the fact that
. 5

h2. is small if h. is small. This emounti, to saying tyietJthe function

x x
2

is continuous at 0..

In Chapter 6, use was made of the statements that

loge x log a if x is-close to, a

and

e

ex ,a
.

s

e rs e if x is close to a

, .
, .

. , F
These two facts are bY saying that4;the two functiOnS

, a.
I.

. -> log -x .arid

t.

are continuous at each,poin fOr-whic;they ate defined.
c,.t.1010

:
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:.to be a tontinuous'functfom"It can be shown that polynomial. functiOns andythe
,

°-sine,,cosine, exponential, logarithm and power:functions are all continuous

a TUnction ia continuoue at each'point where_it fs defined it is said

, func on 1, Suchresuits are consequences of elementary properties of limits'
. _ t ..

..--

.and are d'.scussed in tlfeappendices%

ThOconCept of continuity is frelated to the concept of differentiability.

in the following sense:

-(5)
If f is diffelientiable at a, then f

continuousat a.

This is esimple consequence of the tangent approximation idea

f(x) t(E1) fI(a)(x 0, if' X: is close to a.

(3),

As ,x approaches _a, the.term f'(a)(x -.0' approaches 0 so that f(w.)

mist approach f(a).. The.Converse of (5) is false. For example,. the

f : x

is not differentiable at 0 but is continuous at 0;'

f(x) =-1 k. will be close'to 0 = f(0)

if x' is, close to 0.

The concept of continuityerose out -of the desire, to'formulate a condition

which will guarantee that the graph has no ;'gaps :" A relationship, between con-

tinuity and the non7existence Of gapswill,he stated,in the next section. For

now we note that if the graph!of- f has a:"'gap" at then f will be dis-

continuous (that is, not'continuous). :at a. For expple, pr n'hider the functio

f whose values 'f(x) are given by

A -

fuhctibn

is.pketcW'in Figure Note the "j p", at .the point,



As x aplogqaCheS..0, frOM",the right, the Val'ues f are all equal to

2. so that the Tight;halO'lierlit!. is 1-1; As x 'aill;44.6SChps 0 "from the left

the val4FS' (x) 71 '6.that the , left -ba;.1d limit i Sitce the

left-hat pAnd. right-hatd.limits diffgr we- cbriclude that

lim .f(X)*.odOesn't'ex:iat;
x.. 0

(
.that Is, that f is discontin0IIS at x

i9 ,



For each of the

(i) Ax

IL%
dX

Exerciaes

following find:

then fin

as.
Ax

Ax

P1 y = x3 3x :+ 3.

(b) y = /i, :

r
(c) = 3 ?. -x 0

X

2: The notation
d y

i often" used for the second derivative.

dx2

(a) If
ecx

(

/

find =X.
dx

2

,R

2

2 2

If = -loge x show that = (=L)
dx

dx

the result of (b) hold for any y?

4

3. Suppose Ax) r g(x) = (x - 2) in the sense that

f(x) -
-

g(x)
lim - O.

x 2
2

Sts f(2)? f'(2)?

1

4. Find the e of the following by first specifying the function f of

which this is the derivative and then .finding the derivative of f by

formula, (i.e., nqit by definitibn).

'1

a) lim
[(x + Ax) x

(
Ax

1 )2 1)2
(x + Ax + x +

+ Ax
(b) lim Ax

Ax >0

-(c)

Ax
lim (x +

Ax
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_5. Find 'the lue of the following: [Hint: In each of these; yotAre asked

to find f!(a); the value of' the derivative at a particular pint

where x. .etas some -number, a.]

(a) lim (3)2

h h
.

(b) lira (4 +.643/2 k3/2 ".

0 0 .

(c) lim ], + h)6
0 '12h

(d) lid itefin(g.4- h)

tx

3 cos [-A - 2(a + 6x) ] - 3 cos - its)

(e) g6x
0-

Sketch a graph of each of the folg.Owing and locate the points of dis-

d'ontinuity for each. (Is. is discontinuous, at a, if (L) f ( a) is not

defined a (2) Tim ±(x) f(a).")

X -)

'(a)

.

X -)

(b) 'f : x

(c) f :

fOr -1 < x < 3

for, 0 < Ix' < 2

0' for x = 0 .

2 -1 for Ixl <'22 x / 1
x - 1

for x = 1

(d) f x
2x - 1 <2
2x - 11'

x - 4 for -1 < x < 2

x

x2 - 6 for -2 < x < -1, and

ao.

(e)

637



, -,

"--1 ''

7. We ditscovered in this section
/ that the relationship between differen-

tiabilit:y. and continuity is a one -way affair: .-
I

.. 'A futictior contiguous at x.= a,-"- may or may %not be- differentiable
\ ..4. 4

%.,

there; a function differentiable at x = a, is_continuout there.
,

,.. Sketch each of the following and, determ ne for what values of x the
function is not differentiable.. Are th re any points where the -func-1;

tiro is.not differentiable and yet a ,tan ent line exists?_ a

k) f : 'sin xl S. fOr 0 < x < 2it

3/2 -,--: .4

, . (b) f : x --5X 'for 0 <x < It,
-,.- 2..... i 2/3

: (a) f : x 75 x for < x < a_
. . . . ,(d)r : ._.,.,i/n n, even 7> 2 fOr x > 0-

(e) f : x,xi/n .n,, OCT/ ,,n > 3 'for all -x

41r..,,

(f) f : x -4x1X1'. for all x

I

(g) f x for all
xa

1

- 6x + 10

2( )

(Hint:

a

(x2 - 6x :10)
;42

Use the in'equality 11 - cos _XI

Using the inequaai-ry Ilsin xI

show that lim cos
x 0

-,,

show that lim sin k.= 0.
x 0

t
).

Use the addition .formulas and' par (a) and (b) to show that the
i..

sino\fUnctIon is everywhere continuous. [Hint: Look at
A -- ,

lifn sin x = lint a F h) where Ix - at= h.] °

x -5 a h --5.0'
....

t

Suppose f I sin - x > O.'.

.(a) If. n is a pcad=6tive 1. tege -

(b) W,h;t is the

(c) Is there any way Zo
It

limit of ach

2
(/tn

)

values ofthe

f(Q) so 'that
. "

(1-'11-) .((tin 2+ 3);r)
/

part (R) as n co,?

lim f(x) 1(0)?
x 0



8-2. Properties

We have used

ing such topic'

vexfy and con

verse functions,

of ContihuOUs Ftinctions
I.

several properties, of functions in earlier dischz

a minimainervals of increase and decr'ea

use of anti,.7derlvatives to calculate areas,. , 4

theory was 'deliberately neglected. while idePs.were

y'for each type of function, using methods ap 1.1,4te
.

asnmaxima

Genera

being treated separ

to-the function under

should now be-obvious

belte.ye.that now is't
e--

functions, which are

and gontiui:ty.

We.begin, by

are continuous at

graph of

function

conytderation.. there areandrlying pri

. .1Rather.than proceed'Tur4her in this adi/hoc mannOVe.

he.time to begin to di.ccUss some general proper-bies.i5f

relatpd to the pneePts,Of differentiation, integratitm,.

1 .

listing two general-theorems which hold for functions which

each point of a closed inteY01: The first asserts that the

subh q.functiAp has no "gaps,"- while.the second asserts that such a

has a.maximum akd a minimum in the intervil. Proof s of these two

'theorems pre i the gipPeidices.

' ,

THEOREM'S -2a. The Inter ecTia P. Value Theorem.

ti

Suppose f is continuouS
.

at.eabh

that f(a) / If

is at least one point

nt of the interval a <*x < b,

d lies betwc_n f(a) - and f(b), thenithere

betAen ap and b such that
i 4

f(

Mo4e simply, if the.graph-of a continuoup funbio on an

ponts,,on both, sides of a horiZontal line.(tbe line given by

, graph must meet-theliin7. (See 8-2a.) o -.

interval contains

y = d), :then they



This result is, of coursey'a. gene

which asserts' that 5.pglynomiet1 fun

and b If .f(b) have opposite

l_form Of the LOcat"lbe-Theorem (Chapter 1),

tion has a zero between any two points ,a

signs. '
.

4-

THEOREM 8-2b. Suppose f is continuous at each point of the.ihtervai`''N,

x < b:' Then there are points c..aqe d with a < c< band

a < d < b such tlipt
Ate

f(d),< f(x) < f(c). for all x, a < x< b.

a maximum

10'

C.

a

(d f(d )).
y

both are minimums' f(ci ) = f(d

Figure 8 -2b

Exrrems.values on an interval.
- .- . -

4z,

.. ..

/ .1

Thb'yqlue. f(d) is called the minimum while f(c) :is Rile
gft

ma of f on the given interval.' (See Ftgtre 8-2b.) :For polynomial

P

fu ctions this theorem was stated n Section 2-8-.: The hypothesis of continuity

on the sed interval .a < x < b is of these theorems, as,

will be shown 'in the egerct es. Note; that t theorem does not say that
,

0

c and d are unique, a g aph canvlove_se eral points wttieh are the highest

(or lowest) points on an 'nterval. '(See FfgureT-2b.) '

4
-)

Theorem 8-2b is an e istence theorem. It assert the existence of highest
J

and lowest points blit giv t no means,for finding them,,' For polynomial furic-i

.tions (which are everywhere
4.

differentiable), we noted 1n Chapter 2 that maxi -

mpm atie-minimum values can' only atIr .endpoints.of the
,-

interval or at points

t..

where the deniivels S. In general,'.wehave the followtng result:.. .

,
ow.

+XI
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THEM% 8 -2c. Suppose f. is continuous at eaclii point of the interval.

a <'x <7 b sand that f(c) is 'a maxilUm or minimum value for f on

this iii erval. Then it must be true that
. .

c = a, c.= b, f'(c) = 0, or f is

not differentiable.at c.

In'other words, extremal values can occur only:It endpoints, zeros of

the derpvative, or places where the derivative dOesn't 6-clst (that is, points

where.the,tangent line is vertical, or there is no tangent) The various
4

graphs of Figure 8-2c illustrate each of the possibilities of Theorem 82c.

A '

(

a

S

.1

b b

Figure 8-2c

Somepossibilsi.tie's for f(c) = maximum.

Let IV. sketch a proof of Theorem 8-21e.1 Suppose f(c)

that'notie of the possible conclusions is true that is, c

,differentiable at c' and fl(c).>,.0 ole-f' N) < 0.%2insll

that f'(c) > 0. Since e
.

the v lues

is a maximum and

a, / b, f

er,the pOssibtlity

f ' ( c )
f(c + h) f(c)

1-1 -) 0
h

I

f(c + h).7.f(c) approxplate the positive qUbntity f'(c) Dnd

Wb-nda must themselves be positive if ,Ihi is small' enough. :iince

can find, h > 0 so th-t c

A

multiply through

f(c + h)'> f(c).

o

I hi

+ h <b and

f(c + h) -
h

by h. to bblia..ip f()+ h) - f(c) >.09. so tha

This contradicts the assumption that f(d)

f .od-thcinterval a < x < b. A samilar argument (using

sufficiently small) shows that the possibility f"(-c) < 0
'

\ .

c < b, . me

the maximum

O with

o leads to

61a
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a contradiCtion.

must be true,

.

By this indirect argument we conc lude that Theorem 8-2e

It will also be'eonvenient to make use of the fact that if the derivative

isositive on an interval the function is increasing. An,instructive proof
. .

of this result can be given using thd Fundamental. Theorem of Calculus. (To do

this vigorously it is first necessary to extend the. Area Thetrem and the Funda

mental Theorem to &continuous functions. This is done in the appendices.) At

this point we assume that these theorems can be so extended, in particular,

b

that ..f can be defined for continuous functions' f so that if, f" is

b

nonnegative on the interval then 1 f is the area of the region bounded by

a

bthe graph,of f over the interval; that is, if we use f for this area
a

'then this'is consistent with the area concepts of Chapter 7. Furthermore, it

will le.assumed that if F' = f then
1

b
f(x)dx = F(b)

Replbtcing f. by Ft, we can write

b

a

Ft(x)dx = F(b) F(a)-

Here -we have .the basic connection between the concept of area (or integral)

and that of the slope of a'tangent (or derivative). We summarize.this dis- .

cussion in the following theorem.

THEOREM 8 -2d. The Fundamental Theorem of Calculus

If the derivative Ft exists did is continuous at each point of the

interval a < x < b, then

b
Ft(x)dx = F(b) - F(a).

ca

Let us now show'how we can obtain results about increase-decrease ands

convexity-cOncavity. from this version of the Fundamental Theotem. These

results are established pi the following two theorems.'..

.
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THEOREM 8-2e, Suppose f is differentiable at

a < x < b and that the derivative f' is continuous and nonnegative
*

is increasing on the inter al;

each point of the interval

each point of the interval.

that. is;

(1)

Then f

if a < x.
1

< x
2

< b,
. 4

then f(x1) < f(x2).

If fl. is assuded to be nonpositive on the interval

decreasing.; that is,

(2) if a <x_ < x2 <.b,

Pr&of. Suppose that f'(x) > 0,

Theorem -tells us that

vx2

then f is

and a < x
1

at

< x < b. The Fundamental

x
2

f(x1) = fe(x)dx.

1

Since f' is.honnegative, the area given by

that is,

This Troves that (1) is true.

similar. ...(See Figure 8-2d)

SIf'

2

,x-

f(x2) - f(x1) .> O.

The proof when the derivative is nonpositive ts
.7

must:be nonnegative;

e

' This is slightly.different terminologythan that used previously, a

tivn "f being increasing if

f(x1) <

Itis common to say that a
this ndition, ate} merely
(2) then it is debfeaSing,
f(x2) > f(x

1
)

.

whenever a

func-

x
2
) whenever < x

1
< x

2
< b.

function is strictly increasing if it satisfies
increasing if it satisfies (1). If At satisfies

with strictly decreasing used'for thecondition
<x1 < x

2
< b.
--.



if

this area is positiveso
this point

lies above this---L.

x
1

x
2

The graph of f'.'

Figure 872d

a x2 b.

The graph of f.

A slightly different form of this result, can also be proved, namely, that

f'(x) > 0, for a < x < b

And, f' is continuous at each point of the interval .'a < x < b, then f -is
. .

.,strictly increasing on the interval. The proof is the same as the above and

uses the fact that

/

f' > 0, ik f' > 0 for a < x < b.
a

0 . .

This fact just asserts that the, prea bounded by f' will be positive if the

graph off' .ft lies above the x-axis in the interval. (The proof is given in

the appendices.)

The techniques for finding intervals of increase and decrease and for

locating maximum and)minimum points discussed in Chapter 2 for polynomial'

functions can now be extended to more general function's. The basic method

is to determine the intervals in which the derivative doesn't change sign.

These methodS will be applied in subsequent SecAions of this chapter as'Wk

learn to differentiate more functions.
/

The second derivative f" qs, of course, defined'as the derivative of

f', that is, f"(x) his defined for those x, in tl domain for which

the limit

exists. The value

lim
h 0

,

f'(x -4- h) f'(x)

f"(x) i& then given by this limit.
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A differentiable function f, is said to be convex in the interval:

a <x < b if

(3) f(x2)
f(xl) fi(xi)(x2.- xi)

Whenever x
1

and x
2

lie in the interval.. This says that the graph in'the

Interval doesn't go below its tangent at ahy point of the interval. (See
. .

Figure 8-2e. The inequality (3) asserts that B is not below C.)
- .

(x2,f(x2))

,f(xl) f5(x1)(x2 xi))

A 0

P.;
x x

2

Figure 8:2a

A convex function.

The definition of concavity is obtained by reversing the inequality in (3).

THEOREM 8-2f. Suppose .f is diffeP'entiable at each point of the interval
-
a < x < b and that its derivative f' is differentiableat,each point

of this interval; If the4second derivative f" is continuous and non-

negative at each point in the intvval then f is convex in the -interval.

If, instead, f". is assumed to be nonpositive then f is concave in the.

interval.

Proof. Assuming that f"(x) > 0, a < x < b, we have:. by- Theorem 8-2e,

that the derivative f' is increasing on the interval. Suppose

a < < x2 fib. The Fundamental Theorem then ives the, result

*
This differs firom the terminology used previously, which required that

f(xi) fi(x1)(x2 -.x1)

This is usually referred to as strict convexity, with an analogous definition

for strict concavity.
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(4)

The function ft is increasing on the interval,.. xi < x < x2 so that the

minimum value of f' on this interval must be fqx
1 '

). that is,

ft(xl) < ft(x), for x < x < x

It was noted in Section 7-2 that

b
g(x)dx > m(b - a) if g(x) > m for a < x.< b.

With
.111 i"(x1)'

x we have

f' dx > fi(x1)(x2 - xl

xl

If We combine this with (1 we'obtain the desired inequality

f(x
2
) > f(x

1
) + ft(x

1
)(x

2 1
- x')°

The same result can be obtained if x
2
< Comparable arguments, with' the

signs reversed, establish. concavity if f" is nonpositive. (Figure.8-2f

illustrates relationship between increase of the. derivative and convexity.)

ft

Figure 8=2f

These results about the relation between the sign of the derivatives and

the shape of the graph of f can also be derived without making use rof the

.Fundamental Theorem, for which case assumptions that ft or f" be continuous

can be dropped. A complete discussion of this is given in the appendices. Here

we mention only the basic theorem used, the Mean Value Theorem.
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THEOREM

1.

The Mean Value Theorem
.

"

Suppose f is continuous at each point-;of the interval a < x < b and

differentiable at each point of the interval:- a.< x <b. Then there is

at least one ndmber c, such t1 at a < c < b and

f

In other word's, there is at le one point on he graph of P between

a and b where the slope of the tangent line is the same as the slop of the

line connecting (a,f(a)) and (b,f(b))7(See Figure 8-2g, which ill strates

a case where there are two points for which this is true.)

II

Figure 8-2g,

L, T , and T2 are parallel.
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EArcises 8-2a.

1. Suppose you drive from New York to Chicago, sometimes stopping and, other

times driving as fast as 70 miles per hour. Is there some time.during

the trip when your'speed is 50' miles per-hour? Give reasons.

2. Two cities are 200 miles apart. Starting from, one you (rive con

.tinually to the othe4n .4 hours, then stop. .

-. I
(a), Is there. some place on the rip" here your speedometer reads 501

Give reasons.

(b) Is there some place on 'the trip where yOui acceleration.was 07

Give re ns.

. .

Suppose t at you drive:from Sacramento (elevation 200 feet)to Loggers

Station Capp Gro d ,(elevation 5480 feet). "T 6 map distance between

the two poi is exactly 100. miles. Was the e sometime during the

trip when you were on'il.portion'of road that had a slope of exactly' 1%.

, Give your reason..

If the acceleration of a- moving particle is alwayajlegative, what can you

say.about-ft,a'velocity?.

5. SUppose f". i!'continuous in the, interval

for some c on the same interval. That can pu say about c i f"' is

nonnegative on the interval? nonpositive?

a < x < ID; and that ft(c) = 0

6. Suppose .a < c < b can you deduce that c is a maximum

f on the interval if:
e

(a) f'(x) < 0, < x < c and f'(x) >

(b) f' (x) > 0, < c- and f'(x). < 0,

(c) f11)0 < p, a < x < c and ft(x) < 0,

c < x <

r minimum for

(d) 'ft(x) > 0, a < x < b and f'(x) > 0, c < x'< b.

7. If is positive on the interval a < x < b hoW many zeros can
0

have on the interval? At what point does 'f hav,e its-.maximum?

minimum?

GiVe an example of a. function, defined for '0 < x < 1

f(1). = 1 and

(a) there is no point 'c in the'interval, where

(b) f is continuous and there are at least

Where f has.the value
1
e

62+8

0 V

f(c) =

in10 points

2

the interval .



Suppose f is

bdtween f(a)

b such that

10. Give an e

continuous for a < x < b.. f(a) / f(b) and d lies

f(b). Can there be two points c, between a and

? If not, why not? If so, give an. example.

ple function f defined for 0 < x < 1 such that

(a) f has a minimum but no maximum. on the interval..

-(b) f has neither a maxiMUm nor,a minimum on thejnterval.

(c).. Can yOur answers to (6) or (b) be continuous 'at each point of tb*

interval.

11.. Let f
2

x + 1 ind F : x ft, x 0.

0

(a) :Fihd an expression for F(x)..

(b) 'What is the relation between F(x) and f(x) - f(0)?

(c) Verify (witholit using Theorem 872e) that -f is an increasing

function. Examine ,f at x and at x + h for h".> p.-

if
12. Give an example of a function f, continuous for 1.0 < x < 1, whose

maximum on the interval'is at c, 'and

(a) c = 0,. (f*-(0)./ 0

(b) c = ft(1) / 0

1
(c) c =

2
and f differentiable at c.

1.
(d.) c

2:
and the graph has acorner at c.

1
(e) c'=

2
and the graph has a vertical tarigent,at c.

13. Suppose f is a polynomial function of degree two

interval 0 < x < 1, assumes its maximum value at two distinct points.

suCh that. f, on the

c
1

and c2 of tpe interval.

(.a) What must- c
1-

and
2

be?

(b) Can there.be a-third point of the- interval where f has its.

maximum?

(c) Show that f has a unique minimum on the interval.
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14. Suppose f is a polynomial function of degree three such that f in the

'''interval '0 < x < 1, assumes its maximam value at two distinct points

c and c
2

on the interval,
\ 1

.) Assume

.

x
3

3 2+a2 x +a1 x+a
0'

a
3
>0.

(a)Q1cetch possible locations Tor c
1

and c2.

(b) Can therabe a third point of the interval where f is a MaKimum?
ti

c) Give the.posillble cases for exactly.oneldnimuM when there are two.'

maximw. Sk4ch your'answer, .10 -
,,or

-

(d) Give the cases for exac ly twoailaituums when there,Sre two maximums.

SI4tch your-answer.'

Supposjlis a polynomial unction.'

(a) If the degree of f is 2, ' show that either f is strictly

convex or strictly concave.
. \

(b) If the degree of f is 3, then thsre are intervals on Vich

is convex and there are intervals on which f is concave.

(c)' What can you say if f has- degree 4?
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Exercises 8-2b

ElI. The f et-that the inter-Val includes its endpoints in-Theorem 8-2b cannot

be weakened:

1
(a) Show that the values of f 0 < x < 1 are not even.bowided

above.

(b) Show that' x
1 ..pas no maximum and no minimum on she interval'. J

1 + x _

0 < x < 1:

2. Show that: if f is continuous and gtrictly increasing for 0 <'x < 1, then

gfven,ani d, f(0) < d. < f(1) there i-P--"a unique c, 0 < c < 1 such that

d) = d.. Use Theorem 8- and indirect reasoning.

Show that if f is con nuous on an interval a:< x. < b, then the image

of the interval is a c sed int rval. The image is.the set of points

'(x) with a < x.< ,Use Theorems 8-2b to find the endpoints,

^then use the Intermediate Value Theorem)

4: ,.Show that 4, ft is continuous and positive at each point,of an interval

.--)
a < x < b, then

(eV f(a) < f(x) < f(b) for a.< x <.b.

'(b) there is a function g such that

g(f(x)) = x for a < x < b.

(Hint: Use

No. 2.)

the remark following Theorem 8-2e and Exercise 8-2b,

4.

5. Show that if 'ft is,conti,nuous and f stri.ctiy convex on an interval"...

a < x < b then f has a unique minimum on the interval. Use Thedi-eR

,8-2c and an.ltdirect argument. If a < b can this minimum occur at: b?

. o
at. a?

::' ..:

. 6. :( if £ is a convwfilidtion then

f(x ) + f(x2)

(

.x +
1

2

A sketch will help:
r

(t) Show thtt .,.
;. .,

a+13/2 -2a + 23
2 <
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,

.0 --

7.. ,,al-F-- Show that the followinP is a p I case of the Zan Value Thebrem:
.4, .

r .. lit. ,.0

N If f.' is coptinuous for 7' a < x < b, difierentiable for la r x. < b-
; 7 ' .0b. k' ... a and f(a) = f(b.) = V, then there is a number c sucli that A-:--.

V (c) = 0 and' a < c <1s.. _ .
4

I! 7 :,p . ...

r
../

This result is usuallyTh nown"as 'Rolle's Thecterd. . An, -algebiaie trick
, 4 ' .e.

will be used in late apperA)ces to deduce -the Mean Value Theoiem from
s'A

Rolle's eorem:
- I

(b) Deduce Rolle' s 1The'6'rem from Theorems 8-2b,
9

(Hint: If f is, not constant "'then either its miniutn or'Pits maximum

0."

is not zero.) E 4
C

8. Deduce TheOre'm 8.-e from the MeakoValue Theorem.

is nonnegative qn the interval show that

J(x2)
is nonnegative.)

- xi

.9. Show that if f'(x) = 0, a < x. < b, then f is constant.

f X) 44 f(a) -'
(Hint: Consider

x - a
and use the Mean Value Theorem.

el
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'

Sums and Multiples

c -

udistatiigiThe remaining sections of this chapter c ralphod for differentiating

r

11,

ar

'various combinations of kngn;functions. In this
9
settion we examine sums and

multiples of functions. '
J

1.
....... ..

.

i

. .

4o :

;The 'sum of. twoifunCtions has.tbeen previ_,.lthonterg4. For ple,4-ly encou

the graph Eof
. -

. tv

7-`. , Nb ° '.

a
f : t -9 3. cos at + 4 sin 7r4,

. . ..

..wee obtained in,,Chapter'3 (p. 236)* by addingAe corresponding ordinat4

(Figure 8-3a) of ihetwo functions
:

..

0

u t ,3 'cos yt and v < t )14 s,in at
.

areach value or t. Here we say that f isthe sum. of e two functions

u7and, v and write.

f # u v.

This means that for each t, the vafues f(t), u(t), -grid v(t) are related

by

'

f(t) = t)

el&

In Chapter,3 we let u and v be the .values of & functions t

and Here u and v are the function's u r t ) and

v : t v(t) or u : x..-9u(X) and v x -9 v(x) .

s.
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r

Figure 8-36
4.

The difference of two functions is defined analogously; for exa.mple,

f=u7v

if, for, each x, the value _ f(X), u(x) and arerrelated by

f.(x) =11(x) 7 11(x) *

To be more concrete., if

x 2 sin 3x - 3 cos 3x
00

4y7 can write: f .=u where

/

6514.'
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'..0-

... ,

v : x --) 3 cos 3K. .
3

... 11. ( ."- ''
.,_

,. The functiori u : ---) 2 sin 3x is a daultiple of the function
....r. 1.

% ? 44 , '!'

11.
g : x --> sin' 3x 44:.

1/4.44

0.- in.the sense °that the values u(x) and g.(x)' are related by the 'eluati;:\

/-
= 2ge, . The graph of \ is obtained frbm. tfi.e grasph of g ).)3, multiply-u x

ing the corr6sponding ordi e of-1-"1-hly grEph of g by 2. (Seat' Figure 8- b.)

1- ' V-

1

t

..

.
Figure 8 -3b

u = 2g, where u : x 2 s'in 3x, g x -4 sin 3x.

The basic rules for derivatives of sums and multiples are easily obtained

and simply stated:

(1) if f = u + v, then - f' = ut + vt;

655
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and, for

(2)

then

any constant a,

if f = ag, then f' = a

For example, if f = u + v, where!.

. u 4 t ot and v : 4 sin 7r-E,

1

that is,.for each ,t,

f* =u' + v*;

fe(t)le=0(t) ve(t), .

= -3v Nin vt + 4v cos vt.

4 We also made use of (2). For example, that. = -3o sin Irt makes

se of the act that. D(3 sin.vt) = 3D(sin vt).

We can 'use the concept of approximation "along the tangent line to the

raph of a functi to,showtha (1) and (2). hold. For example, suppose

+ v where u and v are each differentiable at a. We have

--:Su(x) u(a) + 1.0.(a) (x -7a),

v(x) = v(a) + w!(a)(x - a),

if x m close to a. Adding, we have.'

(4) u(x) v(x) tt u(a) + v(a) ( ) + ift(a))(x

Now we use the iissumption that f = u + v to, obtain

* f(x) f.( a) + (1.0.(a) + v'(a))(x - a).

--Fcx a we subtract f(a) from both sides and divide by x - a to get,

x - a,
z ue(a) + ve?h).

f(x) - f(a)

--,
s

We take the limit o x approximates to obtain
_....e.

f(x) - f(a)

We conclude that

1
x a

- a .

+ ve(a).

fv(a) = +e(a) t v'(a).

We omit the easier intuitive argument which establishes that if

1 = age.

Je'
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I
We can combirie results (.1) and. '2), to differentiate f = u - v, for we

4;4.

can write

so that

Thus

(5)

u'

as ,we should expett:

=

= - v2 if f .= - v.

Ex a trTIE 8 -3a. Find the derivatilie f x -x sin x and discuss

its graph in.the interval -2n <.x < 27(

We can let u : x and v : x -4 sin x, so .-that = u - v.' Since,

from (5), t° = u' - v2 and

(6) .

I x > i.., v : x > cos 3V,
.

.

we have the resultA

fqx) -= 1 - cos

For all x, f'(x) > 0, 'since cos x < 1. This.tes us that f is an

increasing function for all. x Furthermore the graph of f has a horiiontal

tangent at. each of the points ( -2x ,f ( -2x)) ; ( (0)) and (2x,f(2x)) since

.f2(-2n)= f'(0) =,f2(27() = 0

.Let us differentiate again. Since

= 0 '-

we _can apply (5) with f, u. and v replaced_by, 1-nd it to obtain

the result

Making use of (6) we have

so that

The function

(7)

u" x->0 and : x -sin x

f" x sin x.

is ,nonnegative in :the intervals

-27( < x < -7(, and 0 < x < 7(

and nonpositive in the intervals

'657
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(8)

thus, the graph of f is convex in the inter-Vals,of (7) and concave in the

intervals of (8).

The graph of f (Figure.8-3c) is obtained by making use of this infor=

mation and plotting a fey points. ,

3

/

1

/

Figure, 8-3c

Y = - sinx

Example 8 -3b. Suppose a pai-ticle moves along a horizontal line so that

its distance from the origin at time t > 0.-is given by s =
1

t + . DiScuSs
t

the motion.
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If t .ts(close to: 0, then s is nearly equal td and slightly larger

1 1
_

than 7: , which is Ver large., If* .t is very large, then 1-c is very small; ,

.:1 6
-so that s is nearly equal to but slightly larger than t. Geometrically

1
these observations mean that for t.> 0 the graph of s = t + aPproaches'

t

the s-axis as t approaches *0 and approaches the, line given by s = t as

t becomes large. In other woras, the vertical line given by t = 0 is an

, 1
"asyMptote.for the graph a s = t"4- IT as t approaches 0, while the line -(1

given, by s = t is an asymptote for the graph as t grows large without bound

through positive values (i.e., approaches 00).

'

.

The derivative of. t can be obtained u4. the sum formula (1).1

We have

D(.t + 1-) = Dt D(1) =nt + D(t-1).

-1 1
Since Dt = 1 and Dt = -1t

-2
= - , we conclude that

D(t t) =1 -

t-

The value of the derivative t -) ' s I . = 1 -
1 is the velocity at time -t. Sibc

t 1
if t < 1 and s' > .0 if t> 1, the function t t + - decreased

in e interval 0 < t < 1 and increases in the interval t > 1. When t = 1,

the vLue of the derivative .is 0 and 2 is th minimum value of s: This

means hat.the particle moves toward the origin as t increases from 0 to

1, is closest to the origin when:. t = 1' and then moves'steadily away from

the origin.
-

The second derivative is obtained by using the

and the power formula:

D - -7) = Dl D(t ) =

t
3

difference formula (5)

Thus, the acceleration is always Ilbsitive (since t is positive), is very

large when t is close to 0, and approaches 0 as t approaches co. The

second derivative

2
t

t
3
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1 *
tells us that'the graph oZ s =. t + T. is convex. The graph is given in .-

Figure 8 -3d.

Figure 8-3d

s = t +
t

r

As Ile remarked earlier,'in some texts the expression "eon6ave upward"

is\Usad instead of 'convex,"



.

1. Find the derivatives of each of the following'

.

(a) ; = x1/3 - 3x-2/5

(b) 2 sin x

=.(3x2 1)(x1.1. 4:1)

(d) = (1 2x)(2
x

.. .'.
, x. .\.2x

(e) y = e .+ e +, cos x..

(f) y = lc r.3e-x

( g).
X

- e
x' - 2 log x

(h) y'= x
e

+ e.
, .

2. Sketch grads of 'f : x ) 1/ +-11 ,. ,-':, -4 1.&, and v : x -41: for
,,x x

o < x < 1. "That is the equation of the tangent line to .each ,at the

poit4174here x = ? How are these tangent lines related?
.

) ..

3. '(a) At what points onthe graph of

y= sin x )/ cos x

is the tangent line horizontal.

(b). At what points on the graph

I
y = - 2x

/, y = 3x + 2?

is the tangent line perpendicular to the line'whose equation is

(c) Suppose the tangent lines to the; graphs o y = 5f(x) and y = 7f(4.

are parallel and nonvertical at the point, where x = a., Show that'.

.these tangent. lines must be horizontal...

(d) -Show that if u and. v are differentiable atx,,,=a and the
-+,!A..,,;,,6

graphs of f : x + 3v(x) andg :x --411(x) - 11v(4 have the,

same slope at e po\J int where x = a then v has a horizontal tan=s.

gent. at (a v(a)).

4. Shpw that if a and b are constants-then

,D (au + bv) = a Du + b Dv.

4
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5. Analyze

(i) increase-decrease,

(iii) convexity-concavity and

(iii) asymptotes (if any)

for each of'the.following functions on the interval given. Sketch graphs.

(a) f : x x - cos x, 0 < x < 21t

(b) f x ex - 2x, 0 < x < 1

( c) t t2 + 3- o < t
-t

r--
(d)' f x ->x2.- 1,2x, 0< x< 2

b

6.' (a). Show that if. F(x) = f, then F'();).= -f(x) 6

1

0

(b) Find F'(x) if F(x) = e-t2 dt.x-
7. ',Show that the acceleration of a particle whose equation of motion is

.
s(t) = 2 cos t +. t

2
is always nonnegative.

Suppose you know only that the rules of this.section hold.and that

n-1
DX = nx Can you find the derivative of a polynomial ?'

9... Consider g k`rr4 1 21' 13 -

(a) Sketch the graph of g.

10.

(g) Define g(x) explicitly in terms of linear functions for all real

/ X.
_

(c) For what values of x. is the derivative not def-ined?

(a) 1 41 X
x
2

< e <1 +- + x
2

2 0 <x <2

x
2

(Hint; Put f(x) = ex i+x+ 71 and find the Minimum of f.

Proceed4ftn a similar manner for the right-and side).

(b) Show that if u(a) < v(a) and 0(x) <vt(x) for' then.

u(x) < v(x) /for > a. (Hint: Consider f = v - u.

(c) Show that if, u(a).-< v(a), u'(a) < v'(a) and u"(x) < v'(x) for

x > a 'then u(x) < v(x) for x L. (Hint: 'Use (b) twice. First

6hoW that W.(x) < v'(x) when a < x.)



11. (a) Show that if y = u and y = v are solutions to the equation

y". - 3y11 + 6y = 0,' then sO is y. = 3u +.8v.

(b) Show that y = ex + e-x and y = e - e
-x

-are each solutions to

-the equation y" = y.s If a and 0 are constants is

.

y = ake
x -x

+ e ) + 0(e
x

- e-x)

also solution to y" = y?

12. Suppose. u(x) = y(x). + where a and b are constants.

(a) What is 0(x) vi(x)?

(b) ShoW that U" = v'

(c) Prove the following converse: If u" = v" then u - v is a linear

functiOn. (Hint: Use,the Constant Difference Theorem twice.)

-13. Suppose. u. and . v are continuous at x Is f = 2U - 3v also

continuoUp;at. x = a?

14. Suppose f.= u + v and f ip differentiable and thus continuous at

x = a. Must u and 40 also be differentiable and thus continuous at

x.= a? If so, whSr? If not, give an example,
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8 -4. Products

-Each value of the function

f : x :xex

is just the product of the corresponding values of the o functi

1/4(

u : x -) x and v : x -) ex.

that s' for each x,
..

i

f(x) = u(x)v(x).

This .relationship can be used to obtain the graph of f from the graphs of U'"

and v, for the ordinate of a.poiA on the graph of f 1.6 the Product of the

orresponding ordinates of the graphs of u and v. (See Figure 84a.)

= u(x)v(x)

V(4

""

.0"
y = u(x)

Figure 8-4a

y = xe
x

1

,6614.

x u(x) v(x) f(x) =, 11(4V(X)

-2 22 0.14 -0.28

-1 -1 0.38 -0.38

-0.5 -0.5 0.61 -0:30

0 0

0.5 0.5 1.6 o.8

1 .1 2.7 2.7
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In general, we say that the functiOn f is the oduCt of the two unc-
.

tions ,u and v and write

f = uv

'if for each x the values' f(x), u(x) and v(x) are related by

(1) f(x).. u(x)v(x).

A formula-for the derivative of f = uv in terms of the derivatives 'of

u and v can be obtained by using tangent line approximations. Suppose u

and v are each differentiable at x = a so that, if we take x close to

we.have

- u(x) tt u(a) + Ut(a)(x -

v(x) v(a) + vt(a)(x -

FOr the product we get

u(x)v(x) u(a)v(a) +[u(a)vi(a) +v(a)us(a)](x at(a)vi(a)(x -a

Since f = uv we can rewrite this as

f(x) ft f(a) + [u(a)vt.( ) + v(a).1.0j(a)]6e , u'(a)v'(a)(

so that, for x

f(x) - f(al [u(a)vt(a) + v(a)ut(a)]
x - a

It follows that

(2)

(3)

or

+ ut(a)vi(a)(x -

lim
-

f(x) - f(a) _ u()v,(a) + v(a)ut( ).
ax -)a

Thus, we obtain the product rule:

ft(a) = u(a)vt(a) + v(a)1.0(a)'

This formula is sometimes written in the form

uvt.-+ vut

(4)
D(uv) = uDv + vtu,

or expreSsed in words:

(5)

The derivative of the product of two functions is the

first times the derivative of the second plus the second

times the derivative 964he first.
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For example, f x x loge x is the product of
(

i77-
u : x --)x and v x loge x.

Since

4

u'(x) = 1 and vi(x) ='X , the product rule gives

(loge
f'(x) = x - + x) = 1 + loge x.

As anIther example we consider the function

f -: x-3 e
3x

sin 2x,

which is he product of

The, product rule gives

: x e
3x and v: x sin 2x.

f'(x) = e3x (,2 cos 2x) + (sin 2x)(3e3x).

Example 8-4a. Locate the intervals of increase and decrease, convexity

and concavity for the graph of the function ,

f : x xex.

The function f is the product of

so that

u: x x and v: x -14 ex,

f'(x) = u(x)v2(x) + v(x)u'(x)

= x ex + ex 1

= (x + 1)ex.

This will be positive for x > -1 -and negative for x < -1 so that the A

graph of f

Falls until it reaches (71,f(-1)) =

and rises after that point.

The function f' : x (x + 1)ex is the product .of

u : x x +1 and v x ex

so the product rule gives
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f"(x) = u(x)voRc),+ v(x)1.1*(x)

= (x + i)ex + ex 1

= (x + 2)ex.

We conclude from this-that the graph Of f- isI
concave for x < -2 and convex for x > 2.

A.

An extension of our sketch (in Figure 874a) should reflect these conclusions.

We should also note that as x Moves. far to the left f(x) = xex approaches

0; that is', the negative x-axis is anasymptote for the graph of f as x

approaches -co.

Example 8 -lib. Show that if f : x -*eatin bx, then

f"(x) - 2af'(x) + (a2 + b2)f(x) = 0.

The product rule given

D(sin bx) + (sin bx) D(eax)

, eaX(b cos b)1) + "(sin bx)(aeax)

Ry C,
= e-"[b cos bx + a. sin bx].

Again we use the product rule.to obtain

f"(x) = e
ax D[b cos bx + a sin bx] + lb cos bx + a sin bx]Lea

Therefore;

= ex[-b2 sin bx + ab cos bx] + [b cos bx + a sin bx]ae
ax

eax[(a2'_
1102)-sin bx +.2ab cos bx].

b2)f(x)
eax[(a

b2) sinaift(X) + (a2 + )sin bx + tab cos bk]

- 2ae
ax

[b cos bx + a sin bx]

axr, 2
b2) sine Lka + b )sin bx]

x 2 2 2 2 2.
[(a -b -2a +a +b )sin bx]

eax[(2ab - 2ab)cos bx]

= 0.

667.

4-

r)



iv

Example 8-4c. Suppose f is a polynomialfunction and that a is a

zero of f. Show that the multiplicity of a is greeter than 1 if and only

if a. is a zero of .f/.

If the multiplicity of a exceeds 1 then ,(x

f(x); that is

is a of

f(x) = (x - a)2q(x),

where q is -a polynbmial function; Applying the product rule we have

so that indeed

4 (x) = (x - a)2qt(x) + q(x) 2(x -

f/(a) = 0.

If the multiplicity of, a is 1, then..

f(x) = (x - a)g(x), where

The product rule gives

so that 4/".

g(a) / 0.

f/(x) = (x - a)gt(x) + 1 g(x).

fr(a) ,-...g(a) ./ 0.

In other words, if the multiplicity of a is 1 then a cannot also be. a

zero of ft.,
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Exercises 8-4/.

1. Let ,y1 = al. + ml(x.- a) be the equation of the tangent line to the
4

graph of u : x -,x
2

at '(a,a2) and a2 + m 2 (x - a), the equa-
.

tion of the tangent line to the graph of v : x -,x3 at (a,a3).

(a) Find a ml, a2,

(b) Form the product.of the expressions for arid y2, and omit the

term involving (x - a)
2

. The resulting expression is linear in

(x - a) and hence defines a line. Show that this line is the

.tiingent line to uv = f : x -4x5 at the point (a,a5) ..

2. Find the derivative of each of the following functions f, where f(x)

equals
1

(a) X42x - 3). x
2

loge .x

(b) (4x - 2)(4 - 24
,

.(n) (x - 1)
12 e-x

(c) x
2

+ x + 1)(Z2 - x + 1)
J

(o)

_t2

e dt
0/

(d)' /7 (ex:+ b)3 (p) exii 24-1 dt.

%.

,(e) 1 .17 (q)' lex sin x
...)

I.

ell .s.c (5; ÷ 2) (r) (loge x)(4x2 + 2x)(cos 2x)

x
(g) x e (s) 2 sin,x cos x

(htl 7/2, x >, 0 (t) x ex log (2x + x)
e

r.2) .3x4 - --1-- () x
2

2
x

.17

(j) 3x2 x2 , 5) (v) x log2 (3x + 1).

'(k) & cos 2x

(i ) e3x s (x + 1)

Q

(14)
e

x e

669



3. Evaluate'

(a) D(3x2 + 5x - 1)2

(b) D(3 - 5x)3

(c) D(3 - 5x)

(d) D(x(,G - 1)2)

(e) D(x + 1)2

2

(f) (x3/
x
1/.2

x-1/2)

2

( g) D 1/;". +

(h) sin(1 - 2x))

D(X Ige x)

(j) p(x7r Tr)()

(k) D(x2 cos x)

(2) D(sin x loge x)

4. (a) Suppose f(x) = [u(x)] . Show that f'(x) = 2u(x)u'(x).

Use the Product Rule.)

(b) Show that D[u(x)]3 = 3[11(x)]20(x).

(c) Show th4t. D[u(X)14 = 4Cu(x)]3ul(x)..-

(d) Make a-conjecture about Diu(x)in .

5. Use the :results of Number 4 to find .y' if

(a) Y =

(b) y =

in
2

x

cos3 .(4x)

(c) y (loge x)2

(ex)4

(e) y =

(f) Y =

(g)

6(2 1)2

sin3 (2x - 1)

..c.

.4

I

( tin t2.dt)

.
Combine the method of, Numberl)! with the Product Rule to find

(a) Y =

(b) y =

(c) Y =

(d) Y =

(e) Y =

x2(x2 1)2

(x. + 1)3'(x2 - x + 1)

(axa + bx + c)(dx2 + ex + f)

(cos2x)sin 2x

x .0i 2
e sn (ax + b)
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n

(f) y = et2 at)
G

. 0

(g) y = xl[loge (x +.1)]3

7. For eash of the following functions, find the intervals of increase (or

decrease) and convexity (or concavity). Sketch graphs' over the intervals

indicated.

(a) y = x loge x, 0 < x < e ) y = sin3 x, 0 < x < 2n.,

(b) y = loge x 0 < x < e. (1) y = x
2
.log

e
x, 0 < x < .8.

8. Show that each of the following ia an increasing funct on

(a) X-74 ix eX, x > p
X

er
e

(b) x ,

(c)

> 1

X
x -4ea '

x >a > 0
x,

(d) x -4,x sin x, 0 < x <
2

9. Show that if f(x) = (x 7 a) g(x) where g is differentiable a13d

g(a) / 0, then ft(a) = 0:

10. .Show thatif a is a zero of the polynomial function f of multiplicity

greater than 2 then f"(a) = 0. If f"(a) = 0 must it be true that a'

.

is a zero of f of multiplicity greater than .2?

11. (a) Show that if y.= e
ax

cos bx then y" - 2ayt +. (a
2

--1-

(b) Show that if y = x2ex + 2xe
x

then yle! - 3y" +.3y1 -

12. (a) Show that

(uv)" = uv" +.2ulvt + u"v.

(b) Use (a) to find the second derivative of

f : x x
2

cos x.

(c) What is (uv) "' ?

2)y

y = 0..

(d) Does (c) lead you to a conjecture about the nth^derivative of uv.

671



8-5. Composite Functions

The function f : x --)17:T. is nOtspt§Omial, circular, power,

exponential or logarithm function; nor is it a sum or product of such functions.

Our previous 2scu ion and formulas do not cover even a simple'a function of

this type. The erbal d cription of f cah give a clue as to how to treat

such a function. Verbal , the rule for f is

(1) "the square root of the quantity x squared plus one."

In other words, first calculate the quantity x
2

+ 1, and then take the square

toot'of the result. .The'operation7-defined by f is composed of t0 wo simpler

Operations,- finding x
2

+.1 and taking square roots. In this and the next

two sections we discuss functions which are compositions of other fun4ions.

The statement (1) can be. translated into a.symbolle form which will dis-

play the fact that f : x -) )27 1 is composed of the two operations,

x -)x
2

+ 1 and taking square roots. Let g(x) = u = x
2
+ 1 and h(u) = 1/17-1,

so that

f(x) = h(ex))

To evaluate f(x) we first ewalubte then eve; ate h(g(x)).

FOt.example, if x =.3, then

and

u = g(3) = + 1 =

f(3) = h(g(3)) = h(10) = ,

In general, we say that,a function f is a composition of the, two func-

tions .4 and g, 'if whenever f(x) is definei, so are g(x) and h(g(x));

and then

f(x) = h(g().

of composition hAs teen pteviously used implicitly. For example,

jaw ,.

The idea

the function

fl,: x-> sin (2x + 3)

1 ,

.

is a composition of the functions h : u -4 sin u and g : .'..4ku = 2x + 3;/

that is,
1

f(x). = h(g(x)).

Also, use has been made of the fact that the general exponential function

672



x -.)Pc

u
h u e and ,g : x -sax = u, then

is a Composite function since

let

we can write

fAx -÷ as
= h(g( )). =

Facility with composite functions dep nds upon ability-to write compli-

cated expressions as composites of simpler sions. Some examples and

practice exercises are provided to help you develop skill at doing

Example 8-5a. Express x)-,sin I as the c mposite of simpler functions.

Since sin lc' is usually read "the sine of the square root of x," the

function x -s sin is a composite of the sine and the square root functiOns.

If weglet u'= g(x) =./i 'and jieulv= sin ui we then have

sin ITc = h(g(x)): °

Example 8 -5b. Express x -)x

tions in'two ways.

-) 2/3
The expresSion x

2/3
as the composite of two simpler func-

can be read as

(2) "the cuberoot of the square of x"

or

(3) ,

Put ..g(x) = x. = u and h(x) = 3yx = v. In symbolic form (2) becomes

(4)

"the square of the cube root of x."

while (3) becomes

x2/3 , h(u) = h(g(x)),

(5)
x
2/3

=g(v) = g(h(x)).

In'other words, in this Case, it doesn't matter whether we'square first

and then take the cube root, or take the cube root and then square. It should;,

however, be noted that generally the order of compoSitiom is important._ In

the Example 8-5a we had

sin = h(g(x)), where g(x) = = u and .h(u) = sin u.

Reversingth8 order of composition, we have

g(h(x)) = 17E77,

which is ertainly not the same as sin &.
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Exercises

1. Express each of the following as a composite of two functions which are

polynomials, exponentials, logarithms, ppwer, sine or cosine functions.

, % /2
(a) x -72 (g) x -4 1/42x

2
- 2x + 111

2
(b) x e

x
(h) x -4 loge (sin x)2

' 2
.4

(e) x 4 cos' (x3 - 3x)
..4ecos x

(d) X -4
1

. --
3e2 sin x

1 "4- x2

)
(e) -4x log

e
7 71) (.k) x -42

( l2

.__,
ft

2%160
(f) x 4(2 - 3x )

2. Express each of the following as the compobition of three ,or more simpler

function-5.,
. .

1

(a) x -4 log
e

18x
2 + 5x + 21

(b) X -4 -77c7.7.c

(c) x cos( sin( cos x))

(d) x + 1)3/5

(e) - (loge x)2

1
(f) x 2x

1 + e

3. Express x IX1 as a composite of the function . x -' x.
2

and Some other'

function.-

(a) Show that the composite of two linear functions is 'linear.

(b) Exhibit t1e composite of two quadratic functions._ What is-the degree

of this' co position?

(c) Is the composite of two polynomial functions,a polynomial

If so, what is its degree?

5. (a) If u : x x and f : x u( u( )) Oat is f(3)?'.

'(b) Suppose u : x
1

. Find an expression for. f, the function defined.

by f(x) u(u(k)).
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Show that composition of power functions is a commutative peration,

that is, if u x -'xa and v x xb then u(v(x)) =.v(u(x)).

(b) Is the result of part (a), true for u : x cos x and v x sin x.

(c) Is the result of part (a) true for exponential' functions

u x ax and x .-)bx? (a, b > 1)

(d)- Is the. result of part (a) true for u : x .-)e)'c and

v : x loge x?

ExpreSs the following as a composition of two functions

2

(a) x t2/3 dt

(b) x

. (

J -2

1

e dt
in x

x2

e dt
0

. What is the domain of the funct on

(loge x) ?

7.

O

as



\. The Chain Rule

Suppose we can express f as a composite.of two functions g and h

whose derivatives are known. The Aerivative of f can then be expressed in .

terms of the derivatives.of g and h.

If .. f(x) = g(h(x))

then f'(x) = gf(h.(x))10(x):'

This result is usually known:a6 the chain

rule. for particular functions in the case fdr. h a linear function. For

,example, suppose

e

rule. We have used the chain

so that

where

hi :

. f : x + b)

f(x) '=.g(h(x)),

: u -*sin u and h't x -*ax + b = u. Since

a, the chain rule (1) giyea

fi(x).= ii(h(x))10(x)

= [cos(ax + b)la

= a cos(ax + b).

which agrees with our previous res

The general result for linear

f(x) = eax + b) . Let -h(x) =-ax + b.

f'(x) gi(ax+ b)10(x)

= ag'(ax + b)

g' : u u and

tution is as follows. Suppose

The chain rule' (1) gives-

4
which shows that rePlacement.of x by ax + b in a general function

multiplies the derivative tax a.

A special case of the chain rule was used. in SectiOn 6-7 to differentiate

a power function. Suppose f :.x -'xa . We can write f(x) = g(h(x)), where

g u -*e and -h : x 7)a loge x = u. The derivatives of g h are

given by

677
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The chain rule gives

f'(x) = g2(h(x))h2(x) = g'(a logebx

a log' x
e a

.e le4.5

a a
= X

x

a

x

a-1
= a'x .

Let us now prove the chain rule by generalizing the tangent' approximation

arguments used in Section 6-7. SuppoSethat f is related, to g and h by

composition

f(x) = g(h(x))

If h is differentiable at /arid g is diffarentiable'at ),. we

can write

(2) h(x) h(a) + h'(a)(x - a), for x close to a,

and

(3)

In

g(u) = g(h(a)). + 132(h(a))(u - h(a)), for u close to h(a).,

particular, if x is close to a the second term of (2) is close to

zero so that h(x) is close to h(a).

We can replace u by h(x) in (3) to obtain

g(h(x)) g(h(a)). + gl(h(a))(h(x) - h(a)),

-which will hold, if -x is close, to a (so that h(x) a h(a)). We now use (2)

again, this time to :replace )1(x) - h(a) by h'(a)(x - a). Thus, we have

(4) g(10)) g(h(a)) + ig)(ha))h2(a)( - a)..

By assumption f(x) = g(h(x)) so we can rewrite (4) as

f(x) m f(a) + gqh(a))112(a)(

then subtract f(a) and divide by x - a to obtain'

Therefore,

f(x) f(a) z gl(h(a))10(a).
x - a _

lim - 8 gl(h(a))h2(a),t, (a)

x a

whichjestablishes the chain rule:

f;(a) = 132(h(a))h2(a

678



dv
The Leibniz notation for the derivative provides a convenient mnemonic

dx

_device for the thain. rule. Suppose y = g(h(x)); that is

4 y g(u) where u = h(x).

We We can then write e(u) = , h'(x) =
du
dx

The chain rUle can then be

expressed.

IL du
dx du dx

Example 8 -6a. Find the derivative of x

Put g(x) = x
2

+ 1 = u and h(u) = 17; so that

Recall that h'(u)

put

1

211.7

47.7.17 = (g(x)).

and that e(x) = 2k. The chain rule tells us that

D(ix771) = hf(g(x))g'(x7

Example 8-6b. Find x).

To express x esin x

so that'

and

The chain rule gives

as,a.composite of functions with known derivatives,

u = h(x) -'sin x, g(u) = eu

esin = g(h(x))

h'(x) = cos x, 131(u) =

,iKesin =.gl(h(x)) h'(x)

sin- x
= e cos x.

4 0
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Example 8 -6c. For f x (x2 +
1)100

find f!(-1)

:We could expand and then differentiate. Obviously, such a procedure would

be quite lengthy. Instead we let h(x) = x
2

+ x + 1 = u and g(u) = ul4°, so.

that

f(x) = g(h(x))..

We have ht(x) = 2x + 1, g'(u) = 100u99, so that (by the chain rule)

1'1(4 = 100(X2 + x + 1)99 (2x + 1).

f'(-1) = -100!Thus

Example 8-6d. Use the chain rule to show that D(loge (cos x)) = -tan x,

.thus verifying integration formula 12 of the Table of Integrals: .

itan x dx = -log. (cos x).

Put h(x) = u = cos x, g(u) = loge u, so that

loge (cos x) = g(h(x)),

io

and hence

D(loge (cos x)) = gqh(x))10(x)

( -sin x)
hkx) -

%1%

Example 8-6e. Find
dx

if y -

= . -
sin x
cos x

= -tan 'x

1

+ sih
(x2

1 1
We let u = x2 -and v =.1 + sin u, whence v We obtainy 1 + sin u v

du
= 2x

dv
and IY. - - 1

dy IL dv du
= cos u, We have There-

dx ' du dv 2 dx dv du dx

fore,
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r

2E = (- -3-it)(cos.u)(2x)
dx

v
.7'

( 1
(COS (u),2x)

(1 + sin u

2x cos (x2)
_ -

(1 + sin (x2))2

Example 8-6f. Analyze the graph

The product rule gives

Applying the chain

(5)

so that

(6)

(ce = x e-x
. .

-x
2

y = D
2 2

Dx

2

+ e
-x

-x
2

to e , we get

2 2 2

D e e-x (-2x) xe -x

The derivative

(7)

= 72x2 e-

2

+ e
_x

2

= (-2x2 + 1)e -x.

w 11 have the same sigd as

-2x
2

+ 1 -21x - (x +

12-).,

The graph, falls until it reaches (_

rises.to
(t

e
-I- -1/2 '

then falls.
1r2-

, then

To analyze convexity we find the second derivative. Apply the product

rule to (6) to obtain

= D [(-2x2. + 1)e-x1

= (-2x2 + 1)D(e-x2) + e
-x

2

D(-2x
2

+ 1).

Now use (5) and the fact that D(-2x2 + 1) = -4x to obtain

681

o.0 a.,

a



y" = -2x2 + 42xe-X2) +

2

2= (4x3 6x)e-x.

The second derivative y" has the same sign as

4x3 -'6x = 4x(x - )(4)(x

(8)

7

+)

The graph is convex for - 1/7 < x < 0 1
e

or ---x,_:!and concave
-2

for x< or 0 < x
2

We can show that if 1x1 is large then e
-x

0, so that the x-axis is, an

asymptote. We know that lx1e-lx1 .7 0 if lx1 is large. Then noting that

.

2

-x2
1 1

x -Ix!
-x < -Ixi if ixi > 1, we'llave e < e ,

since x -ex is an increasing function. Therefore, we have:

,..4t 2
tx I ..,

1xe-x 1 lx1 e- , if lx1 is large.

-Ow"'
2

See Figure 8-6a for the graph of y = xe-x .
iit..A 1° -1/2

tA.:riff .

concave

2 2
fi -3/4,

convex

tonVex

( -1
e
-3/4)

,

2 ' 2 .

-1 e-1/2)

1

Figure

= xe



Exercises-8-6

. Find the derivatives of each of the following by making an appropriay

substitution:

(a) x _4,477
.2

(b) x -4e.

(c) x -4 cos (x3 - 3x)

.

(d) x -)

1 + x
2

.(e). x -)log
e-

(f), (2
3x2)100

g) i -4 (2x2 - ex 1)+ -1-1/2

(h) x -4 loge (sin x)2

2

x e
cos x

(9)

(j)
2 zin x

x -4 3e

(k) x -) 2
(x+1) 2

2. Find the derivatives of each of the following functions by making one

or more substitutions. .

(a) x -4 1

(b) x _4 _ (loge x )
2

(c)
1

X -9
1 + e

2x

, x -4 COs(sfn(cos x)) , P ;

Fird-iliederivatives*of each of the following functions by using the

phaiii't,ite17:,.4.ohg with the sum and product rules.
w.

l'2 '4. (x2 +
-1/2

2 1/2
rx + a

2 2 -1/2

+ 1)

14.-X x

(e)

(f)

(g) love .(1/3-c cos x)

sin2(ex).

e
x sin x
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(.h)

(i)

(j)

log x +cos x
x e e

x -)sin x. cos x loge 147

,

x -) cos
2

(loge x) +sin
2

(log x)

4: (a) Show that if f(x) = h(t)dt then = h(g( g'(x).
a

g(x)

b.
(b) Deduce from (a) that if F(x) = i4 then F'(x) = -

X

5

2

(c) Verify (a) by evaluating sin dt and :then calculating its
-y

derivative.

Find the derivatives of each of the following functions

2

t`/, dt
x

-2

1

(b) x et dt
sin x

x
2

+2

(c) x dt

0

6. (a) Find the derivStive Of f : x ->xx', x > 0. (Hint: 44
x log x

x
x

= e
e

(b) What is the minimum value of f.

(c) Find the second derivative of f and show that the graph of'27f is

- convex.

.

7. Determine intervals of increase-decrease and convexity-concavity. Then

sketch a graph.

,

(a) f : x -)
2

x
L- fx(x2 - 1) -1]

,.

x - 1

(b) f : x -) e
1/x

1 4- X
2

2

(c) f : x lbge 1 < x < 1
1 - x
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8. Find the tangent line to the curve at the point indicated:

2
(a) y = xe-x , x = 0

-11x
2

(b) y =e ,x= 1

(c) y = sin(o
x2)3/2,

(d) y = loge x2) , x =

x

(e) y = ee x

(f) '3" -(ex)gt e

9 If f(x) = (Ax + B)sin x + (Cx + D)cos. x, determine the value of constants

A., B, C, D such tat for all x, f'(x) = x sin x.

-10. If g(x) = (Ax2 + Bx + C)sin x (rm2+ Ex + F)cos x, determine the value

of constants A; C, D, E, F such that for all x, g'(x) = x2 cos

- '

The notation

of y

dX
x a

is sometimes used for the value of the derivative

x = at This notation is used in the fo1lIng problems.

13. Let y = sin x and x =
2 1 dy

+ Find
dt

14. Let y = f(x) and x = h(t). Express

15. Let y = f(x), x = h(t),

dx

16. Find the following:

dy

.dt

. and IL
t=1

dx

t=to

x0 = h(t0). Show that

dt]
t=to

dx1
X=X o dtl

t=to.

-. (a) D sinxl
x=0

+ D sin x.
lx=yr/4

(b) .D(x2 +, sin a x)
=57r/3

685
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(c) -.31 (x2 )1x=a = D]

(d).. D(f(a)sin x +.1f(k)sin a + f(x)sin x)
x=a

17.. Let y = f(t), w = g(t), t =.h(x), z = .

(a) Using'Leibnizian notation, find

dt
dx

(b) Using (a) express 2c_

X=X
0

'17

dz
in terms. of

dx

1E dw

dt ' dt 2

in terms of f', ', and h'.
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8-7 The General'Power and Reciprocal Rules

A special case of the-chain, rule, known as the general power rule, occurs

so frequently that it is worth discussing separately.

Suppose the valueS of the function f can be expressed as'.

f(x) = (h(x))a

. where a is a fixed .real number and 'h is a fundtion. In other words

f(x) = g(h(x)), whereY h : x --)h(x) = u and g u .

If h is differentiable at x and if, a(h(x))a--1 is defined (that is, g is

differentiable at u), then the chain rule givA,

f'(x) (= gi(h(x))1.11(x)

Since g' : u au
a-1

, we can write this as

(1) f'(x) = a(h(x))EL711.0( ).

This is the general power rule. Using the .D notation it can be

expressed as

(2)

For. example, suppose

a a-1
Du. = au Du.

f : x sin3 x

that is

'f(x) = (h(x))3, where "h : x -4 sin x..

The power formula (1)..gies

f.'(x) = 3(h(x))2h'(x)

= 3 sin ic cos x.

- As an example of the case when the exponent a is not an integer, con-

.sider the function

The power formula gives

f : x x2 +1= (x2 +1

687
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fl() .=
D[(x2

+-1)1/21 =
1(2
2

1/ 2 .-1/2
= -Ax + ) 2x

2

I/7X + 1

+ 1
2 , 2

D(x + 1)

0

As an example of the case when a is a negattve integer; consider the

function

-3 1

(loge x

The power formula then giveS

- (loge x
-2.

ft(x) = D[(log
e

X)
-t = -2(log

e
x) D(loge x

= 72(1oge x

-2

x log
e
x

x

.
The case when a = -1 is so mportant that it deserVes special considera-

tion. Suppose the values of the func._ f can be expressed as

where g is a function. We can then write

f(x) = (g(x))-1

and apply the power formula to obtain

ft(x) = Dr(g())-
1] (g(x)r2

D(g(x))
.\

= -(g(x))2 gt(x)

f(k)
),)2

This will hold, provided g(x) / 0 :and g is differentiable at x. In

words, 'the derivative of the reciprocal of .function is the negative of,the::

A.derivative of the function times the recinrOcal of,the.:squere of the function:

Using. D potation,'we summarize:

1 ) -D g(x)

1737' ig(x) 12



We shall refer to this as the rec

For example,'.supPose.

The reciprocal yfie. gives
.

f : x -)
=x,
2

+ 2

1

f'(x) = D ( 1 )-
x °+ 2

-2x

(,

2 ,2
x + 2)

rule.

(x2 + '2)2

..Y

A differentiation formula for the secant functioncan be found using the

reciprocal rule. The secant function is defined by .

sec: x
cos x

. .

,

. %,
The expresSion

o1 x
is not defined if cos x = 0, that is, if x is

cs. _..-- .

an odd multiple of -1 . Thus.the secant function is defined only for those
2

values x whiCh are not odd multiples .of

derivative.

Since tan x =

O.

Ir.

2
,The reciprocal, rule gives the

D(sec x) =
x

D(--1--
osb

)
-°D(Cos x)

2
cos x

sin x
cos x

and sec x =

sin x
2

cos x

1
this result is usually expressed as

cos x

D(Sec x) = sec x tan x.

A 'corresponding formula fOr the cosecant function is given in the exercises, :-
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Exercises 8-7

1. Use the power formula to find .the derivative or each of the following:

(a) x 4E7

(b) x -+(loge X)v

(c) (s3 -+Asr

(d) (et) -10

(e) x -÷
1

Mi
(f)- t 1-)4/3"

(g) v cos
10

2v

i
x

(
,--7 0:/

(h) x-t l .
t
5.

+ 1 dt)
2

.

.

I

2. Use the-reciprOcal rule to find .1,1 if
'dx

(1 + loge x)-11
(a)

7 1

(b)' y - r.
li 2

(C) =
+ e

2x
(f)

Y
1

X

= ( S C X . + COS X)

id.

'

Find an equation for he-tange t tine to each of4the following curves at

the indicated point.

(a) y = sin (2x), x = z

(b). = ( e dt)
2

X d) 0

0

(c) s 4177471

4. For' each of the following

(1.) state, whexe defined,

(ii) ffnd the ;intervals of increase--decrease

(iii)i convqkity-concavity,

<iv) asym04is (if any), and

() sketch.

(a)
1

1 +.

(b)

690
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.
,i;4ow that ecleof the following fs aFti in.cr asing function

(a) 1..X

%
42>

(b) r.X -) (X
3

IV 3X)
10

, 0
.*

,^ 4
expressigis for tie derivatives ;If

.

(a) y = seC, =
1 *

lt,,,

cos x,

(b). y = cscX `1721 f
-.

sin x l

'(c) y = tan x = =C-(-11-41:1:-IC*)(cos
, sin,x
7a--;

cos x
(d) y cot =

sin JC

the results of

D(tan 3x)

.1)1131712x

2 2
Dk sec x2).

(h) D(csc 3x)116

(i) Df stc( csc x)
. , c

7. In what inter/ais is the secant function increasing? convex? Sketch

4,

and (d). to obtain the following:

its graph.

(a) Find D(sec x Csc x

(i) in terms of sec x and csc x

(ii) in terms tan x and ---'bot x

(iii) in terms r csc 2x and cot 2x

(b) Find

(34 D(tan x cO.L.x)

(ii) D(sin x csc x) r.

(iii) D(dbs x sec
v
x) '

(c).. Xing ;

-(i) D(sin x cOtlx)

D(cos x tan x).

"eg

4! ', .

ti

Y.



Show that

(a) D (ta'n(k+1) x) an
k

x sec
2

x,(tank + 1

1 k k
(b) D(

k-
csc x) = -csc x cot'x, k / O.

(c) D(cot2 x) = D(csc2 x)

10: (a) Use the product and reciprocal rules to show that

(b) D x
2

2+ 1
t

3x - x)

4

692 t.
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13-8. The Quotient Rule

By combining the product rule and the reciprocal rule we can obtain.t rule

for. differentiating quotients of functions. Suppose the values of the function

f can be expressed Et

f(x) '

where p and. q are functions (and, of course, q(x) / 0). It Ls then

common to write f= E and call f the quotient Of p and q. Since we

can write

.f(x) = p(x) .72;TT ,

the functiop. f is just the product Of p and the reciprocal of .q. If .p

and q are differentiable at x and .q(x) / 0, then the product rule gives

f/(x) = D(p(x) 77) a.

= p(x) D(Thy) + Thy D P(x)

The reciprocal rule gives

. so that

p(lx _LILL1

(q(x))2 (q(x))2

f'(x) = p(k) (:2.11L1) (

P x'

1( 1

(q())2

-p(x)q,(x) + q(x)p'(x)

. (q(X))2

This is usually written 'in the form

(l) f'(x) _
9(x)pt(x) -,p(x)qt(x)

(c1(xW

and is.referred to a the quotient rule. With D notation it can be .written

as

(2)
D(x)) 4(x) Dp(x) p(x) D9(x)

'cl(x) (4))2

693



In words, the derivative of a quotient

es
4he denominator times the derive-

tive,.og the numerator minus the numerator Imes the derivative of the denomina-

'tor, .all:over the square of the denominator.

Eiample 8-8a. Use. the ,quotient rule to find the deriVative of the tangent

function and discuss its graph in the interval - < x <

The(angent function can be expressed as

tan : x
sin x
cos x

.,.This function is defined for those x for which_ cos x / 0; that is, the

m'tangept function is defined 'only when x is not an odd multiple of
2

The quotient rule gives the derivative

D(tan x)
D(sin_ x. cos x D(sin.x) - sin x D(cos x)

)cos x 2 .

cos x

Since sec x -

(3)

that

cos x(cos x) - (sin x)(-sin x)
2

cos x

cost x + sin
2
x 1

7 . 2
cos x

2
cos x

1
this is usually expressed as

cos x

D(tan x =.sec
2

x.

-The function x -3 cos x is not-zero in the interval
2

< x
2

< so

se
c2 y

x > 0' if < x < 2 .

'Therefore, the tangent function is an increasing function in the interval. In

fact the tangent function is strictly increasing on this interval.

Let us denote the se4kond derivative of y = tan x by y". We have

y" = D(sec2 x) = 2 .sec x D(sec x)

= 2 sec x (sec x tan x)

= 2 sec
2
x tan x,

where we used the power rule and the fact that D(sec x) = sec x tan x.
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The second derivative 'y" = 2 sec
2
x tan x will be negative for

- g < x < 0
g :-.

and positiVe'for 0 < x < that is, the graph of the tangent
2 2 ,'

function is concave in the left interval and convex in the right interval.

.

As x approaches
g , cosy goes to zero while sin x approaches 1.

x
Thus the line givefi by x = -§ is an asymptote. and y = tan x becomes large

as x approaches
2

from the left; that is,

Lim tan x =

2. '

Similar arguments show that

lim tan x = -co.

x -

-It

2 0A,graph -bf.the'tangent function in the interval < x < is Lven

An Figure
I I

Figure 8 -8a

y = tan x

'695 15 c
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I

Rational functions, that is; quotients of polynomiala:,-.,can...bg'differ';'.
: 'entiated using the qudtierit rule. SuCh a function is ''.dizOga's'ed; ow-

ing example.

Example 8 -8b. Discuss the graph of the function
.

x3 + x2 -1f : x --) 2
x - 1

This function is not defined when x = ± 1. ,As.` x :/arifiroanhea'''.+1.. from
the left the numerator approaches 1, while the:dentmlifia:tOr.;is;negeti;ire and
near zero. Thus I f ( x) I becomes large and f(x);:,:negfat131a 'ae ?c-.!" approaches

4-1 from the lefti that is, f(x) approaches '-ai.i:!Siiiii4ir;...skr,guxadirt'S show that

f(x) approaches -ko as x approaches +1 frari: the'

Suppose x approaches fro the left;.%the:,,,riutzlerattOr approaches
while the denominator is positive arid .approaeal.."6:...:,yiligs
-1 from the left, f(x) approaches ;

To discuss the behav,idr when is 'large we: ,expression
Af(x) as

If I x I is large, the explession thayper'eniieg4.S.:-ial neerlSr

4-;; and!'

, 4

Note that f IS continuouz .except Ikherk"., x ,

a / t 1 then as x :'e;pproaches; ,a%, the -,/ii.imieritt#:

while the denominator uapproa'Ohes:.q: "i ii114::

3 2
- f(h).`

2
a + a -1 This is of..ifl-he!'ht that ;a rational function

. " .

is continuous except at the, zeros' Of. :1,:7.:;deiii:irriinaitor.:
;

We now determine the intervals !Of d The. quotient



= (x2 - 1)D(x3
x2 (x3 x2

- 1)D(x2 - 1)

(x2 1)2

(x
2

- 1)(3x
2

+ 2x) - (x3 + x2 - 1)(2x)

(x2 - 1)2

4.
x - 3x2

(x2 - 1)
2

The derivative ft is a rational function. (In fact, the derivative of a

rational function is always a rational function.) In factored form,, we have.

f'(x)
x2(x - )D(x +

(x - 1)
2
(x + 1)

2

from which we see that the sign of ft is determined by the

.(x - -1q)(x + ID. We concludef'

sign of

the graph of f rising when x < -v or x > IS and

is falling when < x < -1, -1 < x < 0, 0 <.x < 1 or

1 < x <

An analysis of the::4.ignOt-. e':tto.determine convexity- concavity is quite

lengthy And will be omitted. The graph of f is given in F.igl.ire

x3 + x - 1 x3
f(x) + 1

x
2

- 1 x- 1

f(-1q) = 331 + 1 -'q + 1 :..- -1.63
2

.

31 3/3 + 11 m 3.6

f(0) =1
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Figure 8-8b

x
3

+ x
2

- 1.

2x - 1



1.. Evaluate:

(a) D(-X
1

-41--.)

,

).0

2

I + x2)
(b)

(c) D(1 - 4-1

(d) D + x2x22)

(e) D(xL + x)

(r),
+ x2)

(g) D
1 + Vi

(h),

2
(x2 -

x + 1

Exercises 8-8

D(sin x )

+ tan x'

x.

(i) D ( e

1 + x2)

loge
(k)

1 2x

D(cos x sec x)

(m) D (ex
rX

e + e

(n) 1,)(1 + log x)1

log x2
D( . e

. Show that D(cot x) . -csc c-
9

Discuss the graphs of each of the' following, as in Example 8 =8a, b. ISketch..

(a) y - x2 4-

2

x - 1

(b) y xc

-2x

(c)
( e

1 + x

4. Find

v/4
sec x dx

0

(b)Co
I

'\ sec.x tan x dx
-/3 --

r.
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8 -9. Inverse Functions

.
Let us review our discussions of'Section51 and 6-1 where we efined the

square root function and found its derivative. The function

g : x -74 x2, x > 0

is a strictly increasing function and its graph meets each horizontal line

given by y = q, c > 0. In other words

g(xl) < g(k2) if 0 < Xi < x
2

y41

c is in the range of g; i.e. .g(S. The
and each nonnegative number

function

x 147 (

is defined for each nonnegative real number: c by

f(c) d if 'gtclY = c;

44

that is is the'nonnegative.real number: d dit§uch that c.=
2

. ,This de-

fines :a function -f, since for each 0 there is a uniiplue d> 0 such

c = d
2

.
This f011ows froth the fact that ,g isstrict3y increasing.

The graph of 'f is obtained by folding the:graph of g over the line

0

given by y = x; that is

(1)
(c,d) lies on the graph of- f if and Only if (d,c)

lies on the graph of g. .(See Figure 8-9a.) )

that.

v



The tanzent'to the graph of g at (d,c) is given by the equation

If c> 0

= g(d) + gt(d)( -'d)
2

+ 2d(x - d).

then` d. must also be'positive and.this line folds over the line

given by y = x into the line whose equation is

y = d + 2:(1(X-- d2).

0

This is-the tangent to the graph of f at the poi'nt (c.261. Replacing d by
.

1/,..j, we see that the tangent to the graph of f at (c,d) has. the equation

1

21-J

(x c ) .

The coefficient of x is the derivative of f at c, sb that

ft( c) = 1 , c > 0.
21J

This same mAhad was used to define

f : x -) loge x, x > 0

x -)e
X

and to ob,tain thd derivative formula

ft x -)
1
- .
x.

in terms of .the. function

p

In this section we discuss .a general form of'the folding process. :Suppose

the function g is defined for those .humber6 in an interval I, which may

be the entire real number line (as in the case .g x -)e
x
), a ray (as in the

.2
case g : x -)x. x > 0), or .a line segment. Suppose'further that g..is con-

tinuous at each point of I and that g is strictly increasing; that is,'

(3) g(x.) < g(x2) if and x2 are in I. and x .x 2 .
4

If we fold the 'graph of g over :the line given by ,.y = x, then4we obtainthe

graph of a functiOn f. The function is called the inverse of g' and is

defined by
c; r.

f(c) = d if = g(d) = c;

that is, f(c) is defined for those numbers .c in. the 'range of g :(meaning

thatc = g(d) for some d in I). This defines a function since for a num-

4 ber c in thedomain of . f" there is exactly one number d in I such that

g(d) = c. This follows from the assumption (3) that g is strictly increasing.

That the d main of f is an interval is a consequence. of the assumption that

A
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is contitiUOUS. In the 'appenaiCes,', it be
...

continuous: atHeach.point,Of..it

A

').The graphs of and g

(c,d). lies on the.

shown

ererelated

graph of

by the

that the inverse .f is

condition

if and only if (d,c).

lies .on the graph of g;

thatiiii,:the graph of the inverse-

over thejine gven by y =

can be obtained by,folding th9 graph of

''
. .

.;' -TheJOlding prOOess used to find the derivative of-the square.root fungi -,

tionalSo:Workslinthegeneral 'case. Suppose f is the inverse of the con-
. ., 2 ... . .

tinuous funotiOn i3,:. and that gw) >:.0.+2 The tangent -to -the graph of g at

(d,c) Alashe equdtion

eci)',2(*.e(d)(x
.

This kolds Ovet,thaline giverv,hy" x into. the whose equatibo is,
.

.

-
d. lxF C),

C

the.,equation of the tangent line'to the.graph of the inverse f :at the point

(n,41),. The value is the coefficient of x,

ObtaineforMUla fOr:::fq6):in terms of c, we °replace d by f(c),

to obtainthe i!hVerse:-fUnction rule:.

f(C)', .if e(f(0) > O.. 4st

geometrically intuitive folding-proCess can be justified by rigorous.

arguments. .:jh the appendices it is shown that limit 'concepts give the same

results; that is,

lim
h 00

is indeed equal to
1

ivatiVes of the inverse circular function's can be ob-Definitions an

tamed using this procesS.

f n + 1-0'= f(c)
h
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The Arcoine Function,

If we restrict

increasing then the

the sine function to'an .Intervai. in which it is strictly

methodO we have been using..can be applied to obtain an

inverse function. It is conventional to use the interval The

function 'g :,x -4 sin x is strictly increasing on thig :ilerval. Its inverse

function is usually called the arceine (or inverse sine) function, ,and'

denoted by aresin. The 'range of g is the° interval -1 < x < 1 .so that -
.

f arcsin x

.is definedfor - < x < I. Its value at

.d, such that

In other words;

,arcsin
. J ,

C, iOthEit real number .

sin d =

f(c) = d if and only if. ko <

aresin 0 = arcsiii
. -

Che graph of f : x arcsin x can

-'sin x over the line given by y

; arcsin 1 .

be. obtained by folding the graph Jpf

x, as shown, in Figure-8-9b.

= arcsin xi% y =

4



_Using th.inverae.functien (,), we .can eZpressthe .derivativ 'of the

arcsine.function f. in terms-of the aiha function g. Wei have

In this ca e

and. we have

0( ) .-1,-cbs(artsin.c) '

Referring to Figure 8,91b we see that

cos(arcsin c).=

and hence.we have

..that

f'(C) =
1

if' < ;.

1 - c

The graph of the arcs -in function has a' vertical tangent at R. ± 1. This

seems reasonable as We recall the fact that the, sine function has a horieontal

tangent at x= .

a.

The Integration formula corresponding to .(7) is.

(8)

'.Thus for 10, < 2

dx. = arcsin x, IX!

x
2

and [bi < 2 the Fundamental Theorem gives'

(,,

arcsin b r arcsin
1: dit-

a =, g.

,/.1

using the*ct-that arcsinReplacing b by

have

t, a :.by
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. 1
arcsin. tmt=: .

dx;

.t.17776-77-1 .x

Therctangent Function

The fariction g 'Aefined by

Tr

g( ) = Ian xi 7...a f:,:)t...2

lk

is strictly increasing and c4ritinuous.),,,'Furthrmore,4theraiige of 'g
. !.

is the
1

.
.

,., .

entire. real line; that is, if c is ,,,R.ny

.,

real number, then there, is a number

'*-' .

d, between - , -
e

-; ehd. 7 , such that g(d) = el. The inverse'function 1,f,

known as the arctangent funet4qprilradvit:dinely,deLinq for all real bumbprs
'

c as
l'

follows:".'
i.7.

0.,

' ..., -. ' i'" , ,. h

t " is
'''' betweenf.(C) = prctlp e is real number A between.

lr
Tr

. ..:-

.
.

- - end Ili-such thedVtan d = c.
Flo).

r,

Graph of y = arctan x., end y = tan x :,411,Fre sketched in

4g... q

The inverse 'unction kormolt (5),gives

f' (c)
1 1

,gi(f(c)).- 2,
sec karctan

since D tan x = sec x. Referring to Figure -9d, we see that

A



and hence

,

This fraCtion is

Figure 8 -9d

2( arctansec karctan c) = 1 +

f' (c) _
1 + c

always :positiv.e. I*n, summary, we. have

and the corresponding

P (12)%

D(arctan )

integral form

1
-----10,--11x r= arctan x.

2 1

1 4., x
4
,. \

8'

15,
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Exercises 8-9

1. Determing the domain and Tange.and draW the graph p the function

(a) f x -*arcsin (An x)

(b) ,!f:x-) sin (arcsin x)

(c) f x arcsin (cos 'x)

(d) f : x -) cos (arcsin x)

(e) f x -*arctan (tan x)

2: Derive the formula

D arccos x -

1/7-72

. Derive each of the following formulas.

1
(a) D arccot°X 2

x

(b) D aresec x =
1

Ix1')/771

(c) p arccsc x =
-1

4. Evaluate:

1,07771-:

(a) D +(arcsin x + arccos x ) (d) D (arcsin.x)3..

(b) D (x
2

arcsin x)

2

(c) arctan x

.

Find Jim arcsin h
.

h
h -)0,

of f(x) = arcsin x at

dv
6. Find if'

dx

1-
(e),

(1 + arcsin x)

(1 - arct )c

1 +_ arc :n x)

(Hint: What is the de inition of the derivative

x = 0?)

(a) y arcsin x
2 y =

arcsin x

(b) .y = arctan .(3x + 2) = e
2x

arcsin

6!.

"' Ace



7. Evaluate

,..

a.

6 1 + x`
(a)

I
, dx

(b) dt

-7c/4. 11772

8. 'Find 'Fl.(x) if F(x) is given

(a)

rx
2

dt
p,1 + t

2

i
3 ,dt

9

sin x
1

x3

dt

0 . '1 + t
2

P
9. What is Jim I 1

dt?

n o

l0. ShoW that each of the following functions g has an inverse f' and

find the derivative of f.

(a) g:x--)l x
+ x

x > -1
1

(b) g x -)xl I
(a sketch is helpful.)

11 Show that if f is. the .inverse of g thea14frg(x)) = x for all x in

the domain of g. Assuming that f and g are differentiable apply the

chain rule to obtain a formula for the derivative of f. fis this the same

as the rule (5)?

12 Suppose .f1' and f2 are the respective inverses of g and gr- Let

g be the:function defined.by g(x) = gi(g2(x)).: .

'(p) Find an expression for' the inverse of g.

2
(b) Use this Method tcifind the inverse of + 2

2
>

3

(c)., What is the derivative of the function f. of part (b)?

as
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.

13. Suppose f is the inverse of g. Put y = g(x), X-16 fy)..: "ShMILthat.

dx
_dy.

y =a

1

dy

dx
x=f,(a)

(The syMbol means the value of the.:detivOtilie. "of tj:..605AeI.,
dt

as a function of t at the point where. 'This is' tlie:baSi'S:fs3rthe

6
mnemonic expression of the diverse rule:

dx

ay .-

14. The notationof Number..13 gives a method for finding,:derivativeS. For.

r

example if y arcsin x, then x = sin y
uy

c6s,y:. and; nenc.O.,

c/Z 1 1

dx 7 cos y cos(arcsin x)

iicse. this method to find the derivative of

(a) ,y = arctan x

(b) iy = loge x



8 -10,. Implicitly Defined Functions

A function which is described in terms of L-..atic? 'Operatic:ins on, and

compositions and inverses of, known functions is -said to'lhe defined explicitly.

matter; hO.w complicated the description, if it is explicitly defined in

terms of differentiable. funCtions we know how to differeri-tiate the.;fUnction.

YoU atiouid; -pressed, be. -4ble,,to differentiate the explicit concoction,

. = arntan.

It often happens that a f':unction

.Thus.. ,conattions

is -4ef ined indirectly 0x.:

eterrhne as e function oi x.-

sometimes we can fins, exptic s representing functions
. , , 4

1, 4

Thts,Is',',the ( 2); 'yhj..\.c.h 11,1the expiibit :solution

We p -,t, iryns-firv4*)

4:'..

x ;
x

'.e;itrere the o..

.

3:-t..,iV., e...,. -e,...Atxar e 'O b

.

.

een ta fe

t

since tangy .; : s positive.

-1

Taking the square .toOt a' ti;"?t1e" arcterigenof both sides _4 since

0 'y
2,

.

In. oth&r'eases is either tit 'ctt ui.yelent :explicit defiriition of a

functitm.define&Iii4ficitly...pht=it' ve4y iiiricult to obtain one An example

is ,proliid6d rJergt
'

;
z + ;;F. sin x.

riY
.
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This equation determines a unique value z for every number x; that is, it

.defines a function x but we are unable to obtain an explicit expression

for z.

It is easy to see that (3) defines z as'a function of x. For any

given number x, f : x2 arctan z + z is a 'continuous functionandhas

arbitrarily large values, both positive and negative. Hence (by the Inter-

mediate Value Theorem), there is some value z for which (3) is satisfied;

since f is an increasing function, that value must be unique, and the func-
,

tion x -4z is defined impll'citly by relation (3).

For.the function defined by (1) we know that we can differentiate y but

the execution of the' differentiation tou1d be a punishment; A much more con-

venient Way to find the derivative is to start from (2). ApPlying the chain

rule and other techniques of differentiation,:we obtaiin

3(tan
4.
y + 2 tan .y) 0 .Lan y + 4 tan y)sec

2
y

dx

2* ,2, 3. dy

,...

2 , 2
x 2 sin os x -2-2x sin x

et.

,which is easily' solved for

0,.

It is true that the:formula:obtained in this way will i.tgelf be somewhat,

implicit-';%sinse:it will express in terms of.both .x and unlike the

'one we could haVe obtained'by differentiating (1) directly, where only x

would have appe on he. right aide.* 4e can still get n 'formula involving
tVq,

'x' alonealone if.we J.t,:hy using .(1):to eliminate y, but itis clearly more
L

convenient to write y,. instead of the complicated 'expression it represents..

For most purposes, we do not need the completea_y explicit Porthula for the

derivative. If we-wish to find the value .dx for aspecified value of x,
dx

for instance, we can first compute.the corresponding value y (eXplicitly.
4

from (1) in this case, but by numerical approximation i!'n most practical prop-,

lems), and then-compute dx .
.from the shgrter formula.

.

we

From.(we obtain no explicit formula for z in the first.place. But

can still obtain a formula for
dx
-- by implicit differentiation. .Thus, if

is a differentj.able function, of x, we' may apply the rules of differentia-
.

tion and obtain

or

. dz. dz-
2x arctan z:+ x2

1
:,

2 dx
+

dx
= cos x

1 + z.
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dz cos x - 2x arctan z

dx x
2

+ 1
1 z

2

If we wish to evaluate. this for a specific x, we will first have to find z

from (3), probably by some approximate numerical technique.

We emphasize that we have not shown that (4) holds, merely that if
7dz

dx

exists it must haye the value given by44). There is in fact a'theorem whieh.

:applies under rather general conditions 4-which covers the present case and

most of those that arise in practice) that if an equation defining1a function

implicitly can be formally differentiated and the result solved for the cleriva.1

tive of the function, then the derivative of the function exist4 and has the.

value found. To prove, or even precisely state; this theorem would take-us A

too far afield; hereafter we. shall use'-implicit differentiation freely to solve

problems, .without each time' reiterating the warning that the derivative has not

been proved to

That we cannot solve for t/he derivative at every point even:though the

function is well defined is illustrated by the:example

(5)
u
5

+ x
2'
u = x

which defines u 'Unambiguously for each x IMpliCit differentiatdon yields

, 4 2x u
k5u + x )

d
x

2xu = 1,
d

du
which can be solved,fdr, dx everywhere except' where- 51)!4 + x

2
'vanishes.

du
Since.from (5) °me haye u = 0 when x = 0; we cannot solVefor at

dx

x =, O. 'Iefact, '1): is not differentiable at = 0.

Even if a function is differentiable at-a given point the method may- fail.

For instance, considenthe implicit definition

(6)
5 3 x3:

v + v.

dv

.::'As before; at x 0 we have v = 0 and n ution fdr from the
dx

implicitly differentiated result

, 4 2.; dv 2
k5v + 3v ) = 3xdx

.

In this,case,'. however, there is a derivatiVe at x = and we can find it by.

writing (6) in the equivalent form



2, ,

v ,t 1)
1

and then differentiating: .

-f V V +
..2/31 dv

ax
6/.2

+.
1)1/3 2 2 2

3 = x

dv
This gives- =

dx



Exercises 8-10

1. For positive x, if y = xr, where r is a rational number, .say

r'= 2 (pt, q integers),. then yq = xP. ASsuml.ng the existence of the

derivative Dy, derive the formula Dy = TX
r-1 using implicit differ--

entiation' and the txhdifferentiation !ormula for integral,

For each Of the following; fiAd: yl without solving for y as a fu#c-

tion of x.

(a) 5X + y2:= 12

.(b) 2x2 = 0

2 '2 ,
(c) - 3x + 6y =

, x3 y3 2xy

For each of the alloWing use implicit differentiation to find

(). ')c.? x
..Y

(b)* x2y + xy2. 3

DY

(c) xmyn = 10 m, n" integers

(d) A 1 7 7 + x = y-1

Each ,of the following defines

entiation to find
dx

(a) xlry- + yiTc = a4-

(b) 2x2'+ 3xy + y
2 + x - -2y +

64 implicit differ-

v(9Iyx Y)1/2.+

2 2 2 4
.3x + x y 45 4

"(e); 4x2 3xy 7y2 = 0

Ftir each equation, find the

(a). 3xY + y2 4- 2y + 1

.(b) x3. + y2x2 4.- y3 - 1 = 0 at the point

(c)
x2

x xy 6y = 2 at the point .(4',1)

(0) x cos y = 3x21:- ; at the point (if 7r)

slope

0

of the curve represented, at :the stated

at the point (-2,1)

(1,-1)

ve



For each equation,; find the.slopp, of. the curve represented at the point*s.,;,

where .x = y. Give a geometric e)4danationfor these resnitdi4N-or points

(a) x3 - 34xy y

cb) x
m

y
m

= 2

x
2

+ y
2

= 2aky

T.. Find y' by implicit differentiatiod..

(a). a sin y + b cos x = 0
.

(b) x cos y+ y sin x= 0

(,c) sin xy = sin x + sin y

(d) .,csc(X Y) ='Y

(e) x tan y- y tan x=

(f) y sin x =.x tan y

(g). xy.+ sin y

. If 0 < x < a,

function of

solving for y. that ft(x)

/
then .the.equation .x

1 2
-+

i/2
a
1/2

defines y

Assuming the existence ofthe dqriVati e ow without

is always negatiVe.



Appendix.3
-74

11+TIIEklATTCAT.::INDUCTICIf>.7

A3-,1. The Principle of Mathematicial'Induction

The ability ti5form,geneial,hypoiheseS in the lightof a,/imited,number

of facts is oneof the most important-signs'ot creativeness in ` "a matliematician.

Equally imPirt t.is:th6, '1ility to prove these guesses,' The best 14.4y to shot

how toguess'a a general principle from'limited observations is ;1s9giv9,

-examples. > . ?

Example A3-1a. Consider the.mms. of consecutive odd integers:'

Notice

1

1 = 1

+3+

=

5 7

3-E. 5 7 j- 9 = 25,

that in each case the.sum_is the square of the numbe*

Conjecture: The sum qf n odd.4CSitive int4g41

.(Thisis.lrue.:' Can you: show'it?)

Example A3 -lb. Consider the following inequalities:

1 < 1001,' 2 < 100, 3 < 100, 4 < 100, 5 < 100, etc.

%.* '.Conjecture:

course.)

'All.posttiVe integers are .les than 100: (False, of

1411 -0 Example. A3-1c. Considefrthe number of complex zeros; including the

.iietitions, for polynceiials of various degrees.

717'



Ztro. degree:

First degree: x +"

(aol
'o).

Second. degree: a2 + 'alx

2a20

Con,fectui.e : Every polynomial of degree:r:,n . exactly
..zeros. When rePp:ttions. are Counted, ,(Ttnei):, . '

. ,

ariiPlef'A3-1d. cbserve the d'perations necessary t4ttirdIratea,..t.he roots
fri:iiii the cOrT411.cientS'in EXample A3-lc. i : : ....:-" :

-,iv:,-:.

Conjecture: The zeros of,, a polynomial of degree. n C al be ...given an
.-terms of the coefficients by a formula which involves only additiOlPii.' ..Pubtrac-

.

tion, multipliCation,1,diVision, anethe:e..Arabtion of roots. (False.)
, ..

:

Exam- ple A3-le. . -Take "any even; number except. 2. and.- try to express it as
the sum: of as few primes as p.oasi.1;111kg:- `I''

I .

A

.
* ' it

. . . .

14-= 2 + 2, 46 7 °.3 -f- 3, 8 . 3 + 5, lo =,5- 4- ,

'12' = 5 7 , 14 -=' .+ 7, etc..

corijectUre: Eveny even npmber but 2 can be expre'ssed as the sum.of.

t-1;m:.prime's'... (As yet, no one has been able to prove or disprove this conjeC-
.

ture.)
. ,

'Common to these examples isithe fact that we are trying to assert,.
something about :ail the members of a sequence of things: the-seuence of odd,
integersy, the'sequence. of positive 'integers, the 'sequence of -degrees of poly-'

' nomials; the sequence of even numbers greater than = 2. The sequential char-
. 2--

acter of the prolzlems-naturall,,y-leacto the idea of sequential proof.,
know - something is -true for6the firs-e,,few members of-the secnence, can we use
that result 7to 'prove its truth for the next member the sequence? Having ;

done that, can we now carry the proof onto one more member? Can we repeats'

the procesS'indel'initelA '

Ireetus'try the idea of ppguentlal prOof,On Example A3219... Snriose we knoW,
that for the, first k odd :integes .l 'S7' .

ai. ,...,.2k 11 .

+ ;(2k -



can we prove that-upon-addingthe next higher odd number (2k.4 1) l'.*.obtatiq
.

the next higher S4uare?A"rOv;(4)-we have at once. by adding' -2k + 1 on bot4 -
4

sideS,

[1 + 5 + + (2k 1)].+'(2k + + (2k +::1) = (k + 1)2.

clear that. if the cgnjecture of Example A3-1a is true,at

v.

0

any stage then it

e at the next stage; Since it is true f9r the first stage, it must be

the second-stage; therefore true for the
.

.

he fifth, and so on forever.

third stage, hence the

A3-1f.. In many good: toy shops there is a puzzle which
. ,

three 'pegs and a se,,of graduated discs as depicted in Figure A3-1a.

posed is to transfer,the pile of discs-from one peg to another under

following rules:

1. Only one disc at a time

consists of

The problem

the

may be transferred from one peg to anothe.,

2. No may ever be plaCed over a smaller disc.

.

the stated restrictions? .If it' is pOssibl
...,... . .

.,.

-.complete the transfer of the discs?, If it

might have.diffic4ty iri:attackirig these. questions.
.V, .

'.18.p tie,- we observe t c.re is no Problem in transfrring one disc,

..

e haVe to transfe

Figure A3 -la

'Two questions arie,naturally: Is it pose to execute thE'-task under

.'proof, One

how. many moves; does it take to

ere.'notor th4idea. of seqUentiar,,
t;

If%

Abe second disc; we -then

discs, 'we tansfer one, leaving a peg..free for

transfer the secolad disc.and cover with the first.

.
.

719
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If we have to transfer three dibbs, we transfer the top two, as above.

"--51lis leaves a peg for the thirf. disc to which it is then moved,'Snd the fir

two discs are then-transferred tocover the third disc.

discs,weThepatoitern-has.nowemerged. If we_know how to:transfer k

can. transfer. .k 1. in the following way. First,.'we transfer k discs

leaving. the. (k + 1)-th disc free to 'move to a new peg; we make the (k + 1)-th

oitasc and then transfer the. k, again to. cover it. We see then that. it
, -

is possibleto move any number of graduated discs froM one peg_to another with

violating the rues (1) and (2), since knowing how toAroveene disc, we,-,

Aeleye a ej.ihich tells us hod: to transfer two, and then hoW'to transfer three,

.'To determine7effe smallest number Of moves it takes to transfer a pile of

di .6bserve that no disc can be moved unless all :the discs above itshave

been transferred, leaving a free .peg to which to move it.- 'Let us designate by-.

m_ the minimum number ofmoves needed%to'transfer discs: To move the

(k 1).-th 'disc, we first'need.m; moves to transfer the discs above it to

andther. peg. After that weiean;transfer the (k +.,.).)-th disc to the free peg.

To move the (4c f 2).-th disc' (or-to' conclude the game if the (lc + 1)-th'disc

is last)..we'Lmust now cover the. (k + 1).-th dlsc.with'the preceaiing. k' discR.;)

this transfer o4 the .k .discs cannot. be a9CoMplished-inless than moves...'

We see then. that-the .MinimumnUmber!.Of moves 'for

'

. A
.

Thio,is;erecursiveexpreSsionfor the mini)mum number of moveathat'is,

if. the minimumis:known. for:a certain number of dscS, we can calCUlatethe
. . .

minimum for one -more disc. In this way, we.hav&defin;4'd the minimum number-of

2'k

sequential moves:. by, adding one. disc we increase the necessary number of moves
4

to one more-than twice the preceding mume.r. It takes one moye to move*one

disc, therefore it. takes three move; to move tvoydiscs,land-sO on

Let us.make a little table(TetileA-1t).



Take A3-la

2 3 4

mk
31 63 127

k = number of discs

= minimum number of moves

Upon adding a discwe roughly double the number of moves. This leads us.

to Compare the number of moves with the powers of two: 1, 2, 4, 8, 16,

32, 64,. 128, ...; _and we guess that mic =2
k

1. If this is true. for
°.

some, value k, we can easily sae that it must be true for the next, for we

have

mk +l
2.raic + 1

2(2
k

1) + jl

= 2
k+1

- 2'+ 1

= 21"-1 - I,.

,

and this is the value of 2 - 1; for n = k'+'1.-.Weokn.w that ti-OfOrmula't

for mic. is valid. when k = 1, but no we can prove in sequerm.

true for 2, and soon.
. .

According to persistent rumor, there is a'puzzle of this kineinamost
.

holy monastery hidden deePin the Himalayas: The puzzle .consists of ?64

discs of pure beaten go,ld and the pegs_are diaMorid needles.. The story relates

that the game of transferring the disi-has beeh played. night and day by:they.

monks since the beginning of the world, and has yet to be concluded. It also

has been said that whehine 64 di6es are completely transfeyre4.,..the world.

will come to an $.pti say the earth is about four W.11ion years

old, give or take .a biZien'fOr two Assuming that the monks move one disc

every.second and Plek inft'he minitum number of moves, is9there.anyeause for
.

: panic? (Cf. Ball, 'W:,,;,, , Mathematical Recreations, 'ltw York:' %As,aillillan Co.;
..7.,W
,

1947.; \p. '303 ff.) , ,
0

.0'The principle c)* equential Proof, statea.explicitly, is this,(First.
4i.,

Principle of MathenalInducti.cift): Let A A2, A3, be a sequence
, 1, 2, 3, ...,

,frof assertions, and,let 'H. lethe hypothesis'that all-of these are true. The

-hypothesis. H wip,bp'iiccepted as proved,if

( 1. 'There-is'a.ge relproof.to show that'if any assertion Al-c -is true,

'l''then theXt* assertion Ak+i- is true;



. 2. There is a special prOof,to show that is true.

If there are only a finite number of assertio s in e seTienceelayten,
- .

then we need only carry out the chain of t71 prbof e icitly to have a com-f.

pieta proof. If the assertions continue in secluencaendlessly,:as in Example.
A

1, then we cannot possibly verify diretily every link in tWchain of prbof.

It is just for this reason--in effect that we can handle aninftnite chain of

proof without specifically examining every linkthat the concept of sequential

proof becomes so valuable. It is, in. fact, at the Ileart of the logical Bevel
o 4:

opment of mathematite.

Through an unfortunate association of concepts this meth4,of sequential
o: o:

proof has been named 'mathematical induction.'
1,

Induction, inrt6 common

EngliSh sense, is the guessin of..lieneral propositions from enuMterof
,

observed facts. This is th way one arrives at_assertiond to
\
prove'. "Mathe-

i

. 0 uitica1 induction " .is actually a method of Aduction or proof'and not S. proce-,.
.

. .

dure of guessing, although to use it ile-ord,i.aarily=4must have some guess to

test. This, usage has been in the language for a long timeNS4P,Ite woultliaig,

nothing by changing it now. Let us keep. it then, anl."reMember that mateati-
. .

cal- usage is special and. often .does not eesemiSrlein any respect the usage of
-.

common English. *

:44 A
In Example A3 -la, above, thaassertion -.it is 4 At.% v-

n ...7

11. .

1 + 3 + 5 t .:. + -(2n -.1) =al.
-eV

We proved first, that i Ak is true Qthat.is; d,f0the pAill'of the,first, k'k
..._":

. . . . 4('

odd numbers is., k2) theri,. Aivi.: is true,
1 2 --...-

odd4 .nttmberp is- (k.+-(.1) . Second, we a

These two Steps'cOmplete the proof. 0.:

t the sum of the first,k + 1

ed thiI;t ks is true:°'1 = 12.

-Mathematical induction is a method of provlingkl hypothesis about a.liet

or sequence of assertions.. Unfortunately it: d8esn't tell us howlip make the'
a

hypothesis in the first, place. In the example just conaideredit was easy, to
/

guess from-a few specific inStanceathatIthe sum. of the first n :Odd numbers

. 2
S 4,, but problem (Example4A3-1g) may not be so Obvious.

,Consider the sum of .the squared o? the firq: n positive

integers,

v , 42 2' 2 2.
1 + 2 + 3 + ..; + n .

We finds that when n = 1, the sum is 1; when = 2, the sum is

:722
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n = 3, the, sum is 14; and so on. Let' us make eatable of the)first
values (Table A3 -lb).

Table A3 -lb,,.

3 4: V. 6 7

sum 5 14 319. 55 91 140 204

Though some mathematicians might be immediately able to see a for
that will give Ili- the sum, must of us would have to admit thaithe.,situatirrfi

is obscure. We mtkt look around...i'or some trick to help us discoper the'pat

tern which is surely tl*re; what we do will therefore be a personal, individ-

ual matter. It ,is a mistake to think that only one rAch is possible,

Sometimes experience is a uskul guide.' Do we

similar ProblemS? Well, we .have here the sum of a sequ
also dealt with the sum of a sequence: the sum of to fi
is n2. Consider the sum of the 'first n integers themse

solutions to any.

end. le A3a
odd numbers

'

squares ).- -what is

a
ate.

This -seems to be a relateelirq,152em, anal we can solve it with
form an arithmetic progresspn which

difference is also 1-; the 'Sum, by the usual formula; is .0ther6fidne/r;;4'

SO we have

the first term4,is ,.c mmon.
,h;

(n +. 1) = ; n2 +
2

1 + 3,+ 5 2n`

1 + +

Is there any pattern here which

These two formulas have one
nomials in n.. Might not the fo
seems unlikely that a quadraticpo
co:Thlieated-problem, but how about

eip =dux.' ireSent:pVi biem?

, assume that there is a formula,

2 2
1 +

n[,,features,, both are ,:quad.ra.tiC poly-
7.itt

a. we want here; alSo be a polynomiL?. It
onial could. .do the job. more

one of higher degiee? s*ry

723
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.
. .

wheie. a, b,. and are numb".eiS, 'yet to be determined Substituting
:

t- ? , 3, and .4--'631Ccessively itithis formulh,we get

. .
= a. + b + + d

2 2
1 + 2 = 8a + 1+b + 2c +

2 +, 3 .= 27a, -F 9b 3C d

.
. . .

'We t'herefore.:.co'hjettweitliAt(. .,

lg..
'7:1'"'

(g.
,e e i

. This -then 'Is our EL'Sse4t,iciri :"e.

:?!Wehaire
if ,'

-

Add

= 64a+ 16b ,1; 4c +

3.- 1 2
n + n +

3, 2

11(.25. + '1

.

nbW e prove

-.c

teo.-w 44'

12 +::2 k 1)(2k,+ 1.

to both Sides I, d'actorp and .Prrip1ify,:.'

+ +
2
+ (k k(k + 1)(2k + 1) + 40,1)2

,

k 1)[T k(2k +.1) + (1i.+.1)]

(k + 1)(k 2)(2k ,+ 3),

1;'' .
and this last ecrwiti-on i.s just
MOreoyer, A1, which states

+1' which is the*fore true if.

1
= (1)(2)(3),/

(

Yr ,
*rue; and A is u)ex.efdr true for each positive integer

'ql-iere is another. formulation of the principle of mathematical induction
which ''.1s extremely useful. This form Avolves the assumption in the sequen-
-aal step that every assertion up to a certain point is true, rather than just

,

true...

9,
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the one aiser#an4Sit4,4,:e.;01RISrp're,Feng., Spec'ifwat_Y,T we have the f011Owing...

( Sec Onci.Tr Again. let. A A24 .,A' :
11 3' :.7

a;seq)rende;..oatsertIOnike.,4;4! let H be the thesis that all of :thethe..

are. true 14.11 . be accepted..a.6::Proved.. if

There..is a gefiefal- p oof,::.3to Shoir thtt, if every preceding assertion.
I.

A 0, .,,tr,us.,;,1}en.-the next assertiOn ..A1+1_ .1.a._trie.,

, There is ke ;s"ne.ifialp proac4to' show. that., Al is true:

It is not".-his.141,-$1%tio),asV-ia-E either one of the two principles

derived. from the .other. The demonstrati

0:s ran .6*1,63:8,e.-

7
e-ple value of'rthis aeFond principle of mathematical--induction is that it

,
permitO.''hihe tr'iKtment- oF, rfyany problems which would be quite difficult to
h4,ndl:esdtrectay opd.the;,basis of the first principle. SUch problems Usually

ptkseris-a.:4noze cxmliebtea appearance than the kind which yield directly to

an a, tack byt-"th...,A1 prf.ric

'le Every nonempty set

ar in ).:.coi4aine a least, element.
:4.e4

of mathe-c
a is

A.

S of natural numbers (whether finite

ProOf.:/eT0;:nduction'is based. on the fact that S 'contains some natural

;.* bet.':!,Allet.;:Vertion Ak is that if k is in S, then S contains a

least elemeint.
!4,

,::Ini-aViep: The assertion Al is that if S contains .1, then.it
i..., contains a".;lea.st number. This is certainly true, Alnce 1: is the smallest

.....,, natural,number and so is smaller than ahy other member of S.
.'...1.'

.:..:, ,
.-.4.i.. 2j5:7 c, :,..

. . .

, Seviential Step: We assume An is true for: all natural numbers up...to
4

and incIuding k. Now let ,S bee containing k +.1. There are ttio
.,-...

ossOilities: ..',..:.

q
.',1,',:S contains a natural number p less than k +J.. In that case p is

'r' less than or equal to k. It folrowethat S .-contains a-least element. .

. S contains no natural number less than k 1. In that -case k '+ 1 is,

least.

This example is valuable because it is a:third. principle of mathematical
induction equivalent to the other' two, although not an obvious one to be sure.

An amusing example of a."proof by this principle is given by Beckenb.,ach in

the American Mathematical Monthly, Vol.,' 52; 1945.

°



THEOREM. Every natural number is interesting.

Argument. Consider the set S. of all uninteresting natural numbers

This set contains a least element: What an interesting number,' the.smal],est

in the set 5f:uninteresting nuiribers!' 'So S contains: an interesting umber-
. fJ

.

after all. '(Contradiction.)
k

The trouble with this "proofs' of course is that we have ntflefinitioA3Of
f 5'

0

--"interestingone man's inteest is another man'..s boredom.

One of he most important uses of, mathematical induction is in deoition

by recursion, that is, an defining a sequence of things as follows: a defini-

tion is given, for the initial object of the sequence; andia'rule is supplied

sothat if any term 1g known the rule provides a definition fore-succeeding'

One.

For example, we-could have defined an (a / 0) recursively in the

following way:

Initial Step:: a° = 1

Sequential Step: a
k+1

= a ak (k = 0, 10 2., 3 ...)

Here is another useful definition. by reeursiOn: n! denote the

product of the first n positive integers, 14e.can define n! recursively

as follovs:r --'n'5.\

..-- .,

.-

.
)'

Initial Step: ! = 1

Sequential Step: (k + 1 ) ! = (k t . 1 1 ( k ! ) (k = 1, 2, 3, ...)

SuchdeUn±tions are convenient in pi-ooPs 'by mathematical induction.'

HerAi is an example which involves the two definitions we have just,given.'

A3-1i. For all positive.integral values n, 2
n-1

< n: The./

Proof by mathematical induction is direct.' We have the following stern.

Initial Step; 2 0 = 1 <-1! ==. 1

Sequential Step:: Assuming that the -assertion isitami\e at°10k-tletep,

we seek to prove it for the (k + 1)2th step. By' 'eZ.F-ition have.

. (k + )4.=-( 1)(k!)

From,theihypothesis, > 2 1
-

and. eonsequently,:.

44Z1-.
P

,(k)(k:)1)(V. (k.4 1)2k-1 > 2 2k-1 =

A
pi,

0

726
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4

Since > 1 (k ,is a positive integer). We conclude that (k + 1): >

The proof. is complete.

Before-we conclude these remarks on mathematical induction, a word,of

caution. For a complete proof by mathematical induction it is important to-

4
:)4hOw the-truth' Of both the initial step and the sequentialstev of the'induc-

.ti6n:principle being used.. There are many examples of mathematical induction

gone haywire because one of these steps fails. -Here are two examples.

Example A3-1j5

..Assertion : All natural numbers are even,

Argumeat: For -the proof we utilize the second:, principle of mathematical

induction and take*. for. Ak, the ,assertion that Sa.lnatural. numbers less ;than

or.equal:to *.are even. Now conside,the natural number k + 1. Let i

be any'natural number with i < k The number j such that i + j = k

can easily:be shown to be a natural'numbpr with j < k. But'if z <k and.

'j < k, both i and j are even; arid. hence k + 1 = i-+ j, the. sum of two

-evennuMbers,rand must itself. beeven!

Fine the hole in this argument.

Example A3-1k.:

Assertion: All girls are the saMe.i

'Argument:. Given girls designated-by a and b,, let a = b mean that

a and. b are theUsaMe. Consider any set S -containing just one girl-
.

1

Clearly; if a and b denote girls in S1, then b. Now suppose 'it is

true for.anY-Set of k girls that 'theyareall the same. Let- S be a set_
k+1

Containing k + 1 girls g1, gk, gk+1. By hypothesis: the k

girls, gl, g2, gk, are all the same, but by the same argument 'so are

the i girls g2, gk+1. It follows that g = g2 =

= gk = We conclude that all,girls'ofa:set containing any positive

integral number,of them are the same. Sin -:e: there is only a popitive integral-

number of girls in the whole World, the assertion is proved-

Fifld. the flaw' in.t
.1

argument.

lire are not trying to express an overly blase tir.6attitude about girls. ,6. ,

original of thiaeXample (attributed. to-the falnous-logician Tarski) had. it

that all positiv ntegers are the same; however, isn't:it.more interesting

to write abou g rls?
E.,:

727,
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Exercises A3-1

1. Prove ;:by mathematical.inductiOn that 1 + 2 + 3,+
1
n(n

2. By matt matical induction prove' thefamiliar result, giving the sum of

an arithmetic progression,to n,terms:

, a + (a + d) 71- (a 2d) + (a (n - 1)d) = 2:21 [.2a ( - 1)d)

.
By mathematical induction prove the'familiar result, giving the sum of,a

progresbion to' terms:

-
a + ar + ar, .,.. + ar

-n+1 a(rr 7 1)

- 1

.
. -]

ProVe the following four statements by mathematical induction.
_

4. t12 52,4. (2n - 1)2 = (4:13 - n)

5, 2n-<.27

6. If p > -1, then, for every positive integer n, (1

7. 1 + 2,. 2' +3 2
2
+ +n 27

-1
= , + (n - 1)27

p)7 > 1 np.,

Trove the following by the second principle of methematicial induction..

8. For all natural numloers n, the number n + 1 either .s .a prime or can

be factored, into Primes.

9. 'For each natural number n greater than one, let no be a real number

with the property that for at least one pair of natural numbers p, q

with p+ q= n, u = U + U
n p q

When n define Ul = a" where a is some given real number.

Trove that'Ull = na for all n.

Attempt to prove 8-and 9 from the first principle to see what difficLties,

arise.'

In the next three problems, first di'scover a fOrmula ° fOr the
!

0 L.
prove. bY.mathematical induction that. you are correct.

-

1' 1 1 1
11.

1
+

2 3 +.777 + n(n + 1)

728
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f 3 3 3312. 1 -- 4- 2 + 3 + + n3 (Hint: Comp e the.:suts you get here with

Ekamples A3-la and A3-1g in the text, ori alternatively, assume that the;

required result is a polynomial of degree 4,),

'13. 1 2 +2 3 + 3 . 4 + ,;+ n(.1 + 1). -(Hint: Compare this with
A

Example A3 -1g in the text,)-
o.;

'14. ' Prove for all positive:integers h,,;

(1 i)(1 + )(i + ),
2n'2 1

+1

15. Prove that x)(1 + x2)(1 + x4) ... (1 + x2 ) _
1,- x

1 - x

16. Provthat. n(n2 + 5) is divisibleoby 6 for all integral

17. Any infinite straig t line separates e plane into two parts; two

intersecting straigh the plane.into four parts; and'

three non-concurrent lines, of wliidh nd'two are parallel,separate the

plane into seven parts. Determine ta; number of parts intoPwhich th

plane is separated by.n straight lines of Whicli no three meet in a

single common point and no two are parallel; then .prove yoUr result.

Can ydu obtain a more general result when parallelim is permitted?

If concurrence is permitted.? If bdth are permitted.?

'1 Consider the 'sequence of fractions `t

1 3 7 17. Pn
) ) ..

2 ' 5 ' 12 '

qn

where each fraction is obtained. from the precedlng 'by the rule

Shaw that for 'n

P = P aln-1n n-
t

Pn-1 q2-1.

s.4fficiently large, the difference between

1F

n.

C111

can be made as small as desired,. Show also that the'approximation

to is improved at ,each successive stage of the sequence and that

the error alternates in sign. 'Prove also that pn and.- qn are rela-..4

Pn
tiv1xPtiMe that is the fraction is in lowegt terms.



' _ . . .-
.,.

.19. Let p .be any polynomial of degree m. Let q(n) 'denote-the sum

q(n) = p(1) +4(2) T(3) + + P(n).(1)

Proite that there is a polynomial q of degree tn.+ 1 satisfying (1).

20. Let he function. f(n) be defined rep ursivelY as-follows:

Initial Step: f(1)'= 3
. =

:Sequential Step: f(n + 1) =
.3f(n)

33
Ifi particular, we have f(3) = 3.

.g(n) is aefined by

Initial .Step:: g(1) =.9.

Sequential Step: g(n + 1) F 9g(n)

Find the minimum va,ilue

, etc.

4

m for each- n such that f(m) > g(n).

'21. Prove for all natural numbers n, that (1 + /5) (1 -'15)n

n
211;,/5

is an integer.. (Hint: Try to express ox y
n

in terms of.

m-1 n-1 'n-2 n-2
x 7y,x-y, etc.)

7t,
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A3 -2. 8ums arid,SE .Notation

_$um. Notation

In the preceding section we made frequent use of extended sqms-in" which

the terms exhibit a repetitive'structure. For. exampleonsider the um

1 2 3 + 3. . 5 + n(2n - 1).

%. We. adopt a concise notation which indicates Abe, repetition instead. of '.spelling.

In.this notation the iium (1) is written

k(.2k - 1).

k=1

This symbol means, "the sum ofall-terms of the. forth k(2k 1) .,whN.. k

takes on the integer values from 1: to n inclusive ;" The Greek capital

''r"' (sigma ) corresponds to .the Roman "St.!':' arid is intended,tá siiggestthe'acrel

"SUM."
_

The notation canbc used moreogenerally too express the. sum of*keluanti-

ties 0
k

where k.takes, on consecutive integral values; .,wd:irp...y.begin* with
, 4.

any integer m and end With any..integer. n:-wherd n > m. pita&

'E 0k
°m 0m+1 m+2

jc=m

(Note the trivial .special cased -n= m, a "Sum" Of qhe
.m

Example A3-2a.,- If each of the regions/ Rk a rectangle with

height hk and width wk, tha'sum of .the areas may ve.written

other typical' example's:

3
0 . , 2.

k=0
1 + k

2 1 0 1 +
+ 17777

".6

=5'

731



Si4,161.1t.illiPOkailt SUM iS
''

:.cOnstant,.-hat is, a quanity4nddpendent of the frit:1.ex,
.-, . h" .

.
.

.

A 4
j.7.1

:.quantity is tie sum of .n term4,,rdiadh of 'which

-

ha l the_ I/B.14d:

opt Th_any SumMatibn the values of the terms'avid. the

of:the..intiex.0.etter;'thusbythe,..choice

,E. 9.3.k E°. j

of- suMMation. Th
,

is c; therefore

, -

total lire not affected'

j=m

.

,140are'.free.td. choose the index letter and its initial value to suit our own:,



Ekerciaesik3-2a

Praire):1

v2. MYite each f th

, n

u '

4t'k=1 1=

410.".;

wing slums in expanded form-and evaluate: 4..
r.

k=1

10

(1)1
.J=7,

3

(c) E (r2

r=-17) .

),

(e)

ni(m - 2) .

m=2

i=0
4

r=0

4!
(4 -

oh Of the followingstateirients. are true and which are false? Justify

our, cone iusfons

.:10 '

(aT 4 = = 28

(b) 1E4 = 4((n, - m) +

(c)` E.k2 < .10 k"

k=1 'k=1'.

.1000 .
1000

(d)7. k
2

'k2

k=3

fa'

(e) E 3 = n3 +' E
k =1

10 10

(f) E =(E
,

k).
ra=1

9' .10. 10 ,,

.
...AE

ul . m=i

1)3

r

`&..--

733. 193:
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)

It=0, k=0'

n

E! Ak k

k=0 k,0 k=0

(j)

. Evalualt

' (a) n= 2

(b). n = 4

(6)n = 8

m.

(Ak - 111-k) = m2 E A
m-k

- 2m Ek A
m-k

k=0. k=0

.n

(

k=1

b,

n
if f(x) 2 ; a = 0, b = 1, and

5 Subdivide the interval [0,1] into A e al parts. In eack pith-

inteYval obtain upper and lower bounds for x2, Using sigma notation

Use these, upper arid lower bounds to obtain expressions for upPer and
.2

lower estimates of the area under the -curve g = x on [0,1]If

you can evaluate these sums without eading elsewhere, do so.

F3.' (a) Write out the sum Of the first 7 terms of an arithmetic progressior

with first term. a and'common difference d. -Express theisme sum

in sigmanOtatiom.

(b) In sigma notation,;write the expression for the sum of the first A,
411.

terms of a geometric progression with_firSt term a and common.

ratio

7. a):.Consider a function f defined by

A/

f(n), - 1)(r - .2)(r - 3)(r 1 4)(r. 5) r

r=1
ti

Find f(n) for n F 1, 2, ..., 5.

.(b) Give an- eximple of a /Junction. g (similai to -' (a)) such that

'a

g(n)'. =.1 ,en =1, 2, ..., 106,

734'



8 r teeach of the ."following

1.

(a); E E r(P.

3

n=1 rr--i..

stains in expa2l1e4 form fed evaluate.

sum EEF is a shorthand'notation for

1j=0

f.

F(i,1)

i.b
or

particular

° 1=1 j=1

+ 2 3 = 18. Evaluate,:

r . O

F(0,0) :"F(0,1) +:F(0,n)

+ F(1,0) t,F(1,1) +

(-7N4 I
.

F(M,0) t+F(M,1)
.

3

: j = 1 1 k i 2 + 1

10. (1)

j=1.

1 1
Show that

k(k = 1) !..r=T k

..xj2

Evaluate

1000

E1 .ot
k {k

kj=2

n

11. If 5(n) =Ef(1),

A i=1

deterMipe

axti,j1

k L0,1.

f(m) in terms'of.thesum function



12. DeterMine ft

. .

) fo sunmiation formulae:

n.

40.

(f) sin (Itn. +b

C-g)

(0 an 4 -ton + c 7/ f(i)s

=1

BinomialTheorem: We define whe're
in

ri
)

Cn - rnr:

such that 0 n. Also 0! = 11 and (n) 0 if r

(a) (o) =' = 1
// (b)

) =,(nnl) =n

9
are integer

ShOw VIVA

?r
)

(c) Establih the Binomial Theorem

3r)n. E., nxnr yr xn nx.n.- 1.

ri,
.1

n ..,0, 1, 2, a , by mathematical induction.

s. 01 V
0

.
. .

. l'

14. Using the 'Bi.nomialiThebrem, give the expansions for the foll)pwring:
. --; \....,,;';'

_e. (a) ()c Y)a

b)

!

4(1(

' .--
15/.° EValuate the following gums.

I n

(a)

s) (2x
3y)3.

!.()S 2y)5.

i(ni)
(nn)

=LN1n)

7=-'0.

.

r=0

gib

73.6



i n.

L6. Sum by firs

L7.

-

using 15(a). .
,-.

Pn(X)
denotes ,a po7,yrnbmial of. degree

for ,x 0,".1, 2, n + I).
n

and

"1-

(ii) SumliatiOn

n' such that P (x ), =
,

2

. ..

Exercises'Al-1, No. 10 illustfhtes.a particularly useful sumlation tedt-
.

...

nique, i:6., representation as a, telescoPihg sum.. It was podsible to Write'.

'.\...3-000.:. .. .. '1' . it

. il 1 ;: _LLi 1 1
9994.4- CIL-0( -' 1) 2 1 2 + 77:7' +' + 1000 *.

+

. k=2 o .i
14 .14114 .1. .'.

-:'in. 'the torm .

,.. P
1000..
p...._?"')L''' 1) (iT. 1.) +

`k 1 ..K..;* ' 2'

=2.
,

Each quantity-r,subtracted in o e

1`). 40 + (999 1000)

parenthesis ib,added/tiack in the' next, so. that
.

the.q11;St two 'terms telescope rom a sum of four numbers to a sum of two num-

ber4.thel"irsiethree terms tel sope,from a sum of six nut hers a.ers to--suM-of
!.7.,,.

twO.numblers, 'etC,

into,a sum of two. tmbers--th

num4 In the 1 t term. S

- .
(1,4 .

entire suMmati.On telescopes (o colla sesl.

frrst mueOn.tide first term 70,4a t ..,jecond
.,.

_.-._" ii.
. ..

bolitdily, a telescopingaum has.tile:foi7M
. . .

.!'nom . e . 4..
. ..,

ff. M. '.. ilk'

24 the above eXimple- we'have' M = 2. = 1000, an4';:f(k)"-=

00 ?-7(5g;'',
sum telescopes, f(1000) f(1)

10

We noTo. use (1) to.establish a short Lctionary of'summa4,1on forMUlae:by
. .

.cOnsidering different functions f(k). Also, we let = 1 without loss of

generality.' Let f(ic)... k, then. . , *.

(2)

n

E {k
- 1

n

,k=1=

_,.737 9 t7



This, IS nothing nei. 'Nov le k ,

A
n

2

.
k =1

equivalent) ,

. ,. .* r . .1c=1. . .,

V
BY linearly combining.' (2) and (3), we ohtain't'he.sum of. b. general. arithmetic

-' pro,
..

s sit)n.::
cell.,

... -
* n

- .

.

..:E (..k ...-, ..ai ,,e . 1 + bn. -n(n'+ 1)

k=1
n

sum
Eg.2

, we let ' f(k). ,k3 , Then,

k=1

k=-1 T
k=1 k=1.4

414' c

n(n + 1)

.

To obtain the

k=1

n

E'k2 - 3-E k + El= d.
s.k.1 k=1 k=1

USialg f 2). and (3), ye obtain.

n

E, k2 = 1{n'.3 3r1(h.+' 1)1 } n(n +1)(2n + 1)

3 , ? 6 " .

k=1. 4 ' ,,

-/ . 4 .

We now can establish. ta. sequential method 'of obtaining sums) ofuthe form
'''';

...

1

o 4 ' P(k) Whose terms are values P(k) of a....'liolynomial fungiiOn. Becaude.a \

- .

k=1
.

. ,

,polynomial is a li.nar 'ombination ofpowers, and summation isa.°10.near.proe,s

n , .
-

it is sufficient to g4e a sequential method for EXr,
r a nonnegative

. ,.

fl,

. ,
A

I,-

@.. C - - k=1 t a

e r . ) .
AW ;\

Chet sing f( k) ,= r+a in ,suttimation, formula \ 1/ gives us<-

,
`. fkr+1 r+1 r+1

x 1) n

'.<----
Using. the. Binomi4A'heorem, wetobtain ( :

''' i
ki.+/--- (k:- ,,l)r41- = (r..+°1)kr + P(k).

. ,
t; '68 i t .? .1.

.51118
t.



" '
n

wher? P(k) is a 'polynomial of deq;me r 1. Thus, the sum Is canJ
r k=14 .#

be:expr pled' in 'tends Zifftpamg of -lower degree. .Since we already have he sum

for r and :2, we pan. 'repeat '.ene MeLhod.lkeqU,entialVy to sobtEiin the

sum for ahy r.. (compare Withdt/tcercises4A511, No. 19).

We can enlarge our-summation table by chocis,ing other functional. forms
. .

f (k), e.g., -sin(ak t b). By (v),

Elsin(ak + b) - sin(a(k 1)+1=
.

X=1

Using the identity

5 1

0.n(an: +-b) - sin b.:

- + B
sin A

A B A
- sin B = 2 sin cos ,

in Equation (5y, we" obtairr

n an
I

a.
sin

(6) cos(ak + b - =,. cos(b + an)
2'

2 ala, .
.

If b = t-.. , 4'6) reduces ,ioa

n -...11,`.

(7) E cos ak = cos a,+

'?\) 2 .
k=1

If b =
-2.

a +
-2.
/C. .' (6) reduces to

Esin els sin

kr.1

b

2

an

2) . a

sin

sin
2

.a

sirvan
2nN

2 sin-,a

By choosing other 'fanctions f(k), we can enlarge our liktfof ,iummatiOn.

formulae.; We, leave this fo-ar eyercises , '14

e

1 9 Q
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Exercises A3-2b

1. /rite the following sums in telescoping form, in the ft:1

E{u(k) u(k _ 1, and evaluate.

k=1

(a) Ek(k + 1) E k

k=1 k=1

n

(b) E k 2k - (f) E k k + )(k + )

1

k=1 k=1

n

(c) E.2k(2k + 1) (g) E k

k=1 k=1

(d) Ek(k +1)(k+ 2)

k=1

n

(h) E rk

k=1

2. Using 2{u(k) - u(k - 1)} ) -_u(0), establish a short dictionary

. 1=1
of summation formulae, by considering the .follOwing functions u:

(10 (a + kd)(a + (k + 1)d) ... (a + (k p)d)

(b) The reeiProca of (a).

(er, rk

(d) krk

(e) k2rk

(f) kt.

(g)

(h)

O -

'arctan k,

(i) k sin k

3. Simplify:

sin x + sin 3x ± sin ((2n - 4x1
cosy x + cos '3x + + cos ((i2p.- 1)x) .



.

4. Another mattiod. for summing E P(k) , a polynomial) can be obtained. by

Busing .a special, case of problem' 2a, i.e.,

El(k ± l)('R)(k.- 1) (k - r + (k).(i; - 1)(k - 2

k=1 . .

+1).(.11)(n - 1) ... r + 1),

or E. k(k 1) _ r + 1)
(n + 1) (n4

t=1.Firs ,

thee form

snow how ,to.represent any polynomial .P(k) of
th
r

- 1) a k(k.- 1) ( r + 1)'

.(i) P(k) + a k +
r2

0 1 2:' r:

If k = 0, then a.0.= P(0); if k 1, then al = P(1) P(0); if'

'44.t .= 2, than a2 = P(2) - 213(a) + In general, it ca-n be shown that °

(ii) = p( m) (T)i(m 1) + (2)P( -1)7p(o),,

m = 0, 1, r. a

SinoelbOth sides (i) are polynomials of degree . r .and Is satisfied

for = 0, 1; r, it oast be an ident.ity.

Now sum Ep(k).
k=1

'Using Prot,. 4, find the-following sums:

4i-

. (a) EsA9Dlish Equatifon (ii of Number 4.

''(b) Show that a' is zero for m > r.

, .

741
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Appendix 4

FURTHy TECHNIQUES OF INTEGRATION

A4-1. Substitutions of 'Circular. Functions

'Although-it is not ali4Ays,posaible to-integrate a given `function in

terms of elementary functiond, there are important. broad classe04eXplicitly

'.integrable functiiins. Al). powers'and 1tence, clearly, all 1.6ixpoMials are

..lexpiicitly.integrabIe:. It is not so cle r butit'is true that all rational'

l'Uncifon,3 ariexplicitlyintegrOle (see Section A4-3), It follows that all

integrals Which'.Can be transformed by substitu ion into integrals of rational

funtticha integrable-. 'In this s tion wesh011.6how that en

integral of any rational combination of x and A.(x)411pre.'

. 4.

- ,

Can be,transforMed into an.integral of a4rational comb tion of Circular

.functions, anfurther that.an integral of a ratio 1 combination of circular

tfUnCtionvcan.be transformed into an integral of a ational function'.

Wo7ahOuid Consider the svbstitution of a cirdhlar function whenever an

. . /2 2
integrand is s_ combination of x and one of the expressions °;%a - x

17---72 )(77.-7:.
0)

' a + x , x =:.a ,qa > 0) suggesiive qf,tha Pythagorean eXpressioOfor

one :of the side-aofrtVttriangle in terms-ofthe other iWo.'

Q00,.= Ax? +.Bx 4 c,

2EXamleA4-1aCO4sider

We. utilize the substitaltiod:'

-.)

..x --t Ei

ax

'2A V' X

1:17.-1(2--- a cos e

a cos eab.

04,e FltiT0bla. .Observing. that for. x ,up
,a If' .

substitutli5n

=111(6 deI = 72-122'14:cos'
o

we obtain by the

'



a
/2

Fig Lire'AL171a

ba Alllb. For the integral

.i.!()C2 + t1.2)3I

substitution see Figure
$.

Figure /341-lb

44

dx =

J

a tan 0

a
de

' -

cds
2

e

n.

+
2. ala 2 X' =

COS B/
Thus. we obtain:

=
cos3 e

t .

a 1

cost 0 a

de = cos 0 de -
2

sin .0= =
&2

2a a a + x

Eic21202,,A 4-1c The integration

1
I = dx

S 2
x x - a

2

. 744
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.*

performed-with the aid of the sUbstl.tution (see Figure
a '

x -
cos e '

a

a sin e
dx d

cos
2

e

1x 7-7,. .
- a = a tan.e o

We have

:

Figure A4-16

2
j.(cos. e) 1 sin e

'.= '8.2 a tan.8
co

s2
e

).de

t

=
1 f

cos e de =
,

,-

sin
2

e
+ =

a a x

C
Example.,44-1d. 'Consider the integral'

I 1 1 dx .

thesubstitutidri of EXample A4-1c we obtain

.

V

1. (a sin e) f
de = de

cos
2ea tan" e 2
e

cos e
.

4.

it

To complete. the job:aigebraic trickery' is needed (the Objective of the
...

manipulations will be clearer after Sec-L= A4-3 on detOMPositio4:into
. . , , .

partial frattions),. We have ,

\ .:-
r

1. cos e 'cos e cos. e 1 1
+ sin elcos e - 2

0
7 2 2 '1 -sine

.
cos 2e 1 - sin e

. -.0 . -',

.
.

With this much as,,a hint_wd'leave the integration as, an exercise.
, .

, <

*
Here take 0 < e < for x > 0, and )< e < n for x < 0.

745.
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.

. THEOREM
Aritntegral of:ary,..-rational c9mbibation'of' Y and' gQ(x),

Wher
' \.s

.)

Q(x) = Ax2 + Bx + C,' (A C),)

. .

catibe transformed/by a substitution. x = f(6),:of,Whek-tf7is a circular .

tunctionj1nio..aninte,gral of a rational combination Of". sin 6 and

cos e. ;-

eare?concerned with integrals of the form

-(2)
' '

.4

I.,:.-40 ( x , 1Q57)
1.6.

.ls a
4

yktr,,wher ptival expresdibn and Q(x) is givOn by (1). Porthe""prOof

.1./e'first Makea preld.binary,linear transformatiOn to replace ix) by one of

.the standard forms of Examples. A4-1a, b,'c.
- \.,_ /

,...,

.

We VcOppl%te the square" to.,dbtain

CZ( = (

4A2(
'11"= 2A '

B

separatkZe. problem into .three cases,

= 1171-cr

Case-(i),
'..-"-.

C
C 2

andIf. A: < 0 __, .11t- -J.-7 < d we have

4A.

and u 7b in (0), and

IQ(x) = c F. -
u2.

Since dx = , the substitution.. = u -'b yields.

I =4.1 0(u - b , c 1/27-77)du.

limy; emp oying the substitution u = a sin 6 of Example A4-1a, we transform

the inte nil into the-fort

(5) I = af 0(a sin'6 - b , c a cos e) cos e :$9 , e = arcsin
x + b

. 7

Since 0 involves only rational op4ations, we haVe established the theorem
- ..r.

a

in thii awe.
. 746 2os
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IC-Ak > 0, and - 0, the substitution

" ; 4A2 1:
b..

.

. x + b = u = tani,
th

as in !xaMPle 401h; .confirms the theorem for'thlt. case.

.

. Case

If ' A > 04ord K tle. substitution

- se.
C

-7..,

x + b p. u =

e

4 cos e''

as in ExampleA4-1c, yieldi the,desirdd result.
' -

. -
. .

'

Theintegral ().can'be also transformed into an integral of a rational

.combination of sihht and cosh t by an appropriate transformation x'= f(t)whereg is a hyperbolic function. The p oof-is left as an exercise.

r.-.,

OREM A4-1b. An integral of a rational combinatiOh-04 sfn x and

cos x Can be transformed Into an integral of a rational function

a suitable s tution.

. We con er integrals of the form

IP\ylJsinn' x , os- x)dx

I

where is.n rational expression.' We observe th sinx and ,cos x are

rationat expressions in t = tan ; namely,

( 9 )

FukthermoYe,

sin x=
2t 1

cos -

t . 1 + t

(10). dx = d(2 prptant) .= . dt,
1 + t

, -

",Consequently we may transform the integral (b) into the

function by.employing the substitution

x =' 2 arctan t;

'206
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(10)
.

thus; entering (9,band (10) in (V) we obtain the integral in the form

1 t?
2

fY 2 1 2) 2 " P

1 + .t. 1 +to .

Theorqps 10 -3a and 1073 do not necessdrily point th4 way to tha simplest

''Method of integration for a f ction of one of tKe-types2considered here; they

.1

S.

..eimlpidndiates line df7iipproach which is sure to work but maiIead to

epormous coMplibatiOn. tOften.some special deice leads to the solution far

, --
more. simply land directly.

1

Exercises A4 -1

1. :Integrate the following functions, the tnumbers a and b. beingsponativL.

/777.
(a)

5c2

-
(g)

X -1:-`

2 2
111 - X-

h) ,(3/0.+ - x2)5

2. Let R(x,y) denote a rational function in x and y. Reduce the

following integrals to integrals of rational functions.
. . /

(a) R( x, LiTT7T)dx, a J 0.

Vax + b
(b) Pi(x ,

ex -Ild
dx, n an integer, af c 0,



ing the:TeLt of Afikber 2, integrate

Iv. Reduce to rational torm.' 1777
1 # x

, Express as elementery functions

g.7177. g:7.
- -

dx

1-+ sin X

dk.
1 - cos 2X

+ x4

dx

VI: 4. x4

6. (a) The integral

degree n

f4..x2.+ 2bx + c

and a 0 can be reduced to

.

411 : x
x

!Iv

dx, Where

form as described in the text.
,

\integration or.
1.

: , lax2 + 2bx ±
\

degree (n - 1) and constant k.

It can

, namely

R(X) D(Q(x)iax2 + 2bx + c

-4.x2 + 2bx + c

Show h4 to find

.

(b) Using} (
\a),

iritdgrate

and k .

t5 - t 3 t

11 t72

(e) Calculate -the integral of (b) using

ft

P(x) is 6 polynomial of

a rational trigonometric..

be also reduced

for some Poly

trigonometric substitutions,
-----tY' .

.

and compare the merits of the two methods.



7. Integrate

( a) )
1

sin x
- .

(b )" '(by a 'method other than that of ixaqplei.Alilld)
cos If

. -2

750
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Integration Parts
. "

0
i

. ,

(0 The VasimformUla.. method' of integration by parti is used to'

integrate.certain kind's
yi,

of'Producta. The method corresponds to the, formula
/ -

,for'the der attire Of oduat.
,

., .

Ali-a. If''t. and g have continuous, derivativeS over a common l

7.7=- 7--\- 2.
.,

IiterVal contaihing, a and b. then. -....:

. t, b
4 t

1. el. - . I 8

) (1).1 f20131(x)dx =(f(b)(b)-:f(a)g(a)] - fl(x)g(x)dx;

iThe'theoreth follows,direCtly from the product rube ((it) of SeCt;op 8L10

andtAhe Fundamental Theorem of Calculus.

001,p.ieibnizian notation, for u = f(x)', du = f'.(x)dx -and v.=

ilf'.131:ALK-- we obtain fdr t finite integral corresponding to (1);

c.11 dv = - 1v du.

Integration by means o (2) is ca led i to ation y parts.
,

11

...

'Example A1-28. TO. integrate loge\ observe that lo
ge

,
x. has an,'

, .
.

especially. aiMple derivative and sot u = lo

et; we take v = x. Contequentl ,from t

\
.41,

log x dx x -x 'dx

4= x lOg x - x

the forniula we have already obtained,.

In application, (2) is used as above for the integral of a product,gere-.

the product of the,integral of one factor ana the derivative of the other is

formally in4rable.
lor

The,LeibnAian notation in (2) was introduced as 8 ahorthand for they

explicit formula; But'the notation suggeSts that we might interpret as

a funet4on of v, and ve as the inverse function of U. This idea yields

an illuminatimg 'geometrical interprjtation of 4ntegratton by parts. Suppose

that ,u.= f(xisind v = g(x):, where f and 73 .have inverses. Then. we 'clan

751
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.-.,.

.'ratite 'U =-0(4 V) and = 4n) ,where '93-. and * are inverses. (The 'proof.

left to "' erciies.A4-QNo.:2)...et. 144= f(a)', ul = f(b) and vb = g'(a)

zar:!yccrilb).. 1.14 have ui.T. 0(vi) and, iniersely5 Ji *(ui).:for-.1.= 1,2.

.c. No :suppose 16 and:* are increasing end.nbnnegative. irhelOroin the

1tam:liar interpretation of:integraleserea (see Pigure'A4-2a), .immediately
. , .1.. .

Eie '' 7 . :, ,,A . 4; .4,.
.

.7.-,,- .., .,

L.

v

1
u

from which we at once obtain

ul

1
v
1

- u u ] - . du.

P

From the Substitution Rule 'we immediately recognize this equation as aform
,

of (1). A lie geometrical,7guilent gives the same result when 0 and *

_
are decreasing. .

e. '

In general,.this.interpretation of lltegratio by paelgiVes the formal

integral of any .function which has a formally integrable inverse. %It,:

0



....gample.14-2T1.. Condider'

...

S i I: ar x lx,..,1 ,41; integral, n. -1).
:::; 2i .

\
integral,

.

* * ,,,. . -' t 1 ,..

..., t . .i -, ... .. , /:4'--.- f ,
, :. 4-

, since the-a. Eiilihas iii simple .ialeraic derivative we set u -:i.: arcsin x. goi.... frra
dv =. x. dx :and take v,= & .°:-FOr .the "d:o.m4N, .(< x < 7 , we have

.;

n - - _ IT :.
% 2 , . n + 111"

., :, . ./'
- '''.. u. r.:ardQ11:1..ntiAti, + 1).e. ,and 0 = -12,1" ..sirin+37' ui--..F. rbm 7;heareniA471b we know

. ilf,+ 1 I i ..

.2-hat, Intl An be tiensfOrmed 1. nto;ihe integral*, Aitional ifunc-Cion .
..... r - a. * , . ..

As we shal.T.i. gee' (tect,ion A410) r t,ionel furratiO0s ake .aiway4 liitally integrable..
...,. k,-,.: li+a . .

..

-It ralows that sit u-'. is if molly' integrable with respect to u and hence --

'IAA-6 .' '45- arbsIpx i,_ Orntally iiit,egrable with respect to x' tteductioh to

.. theliitegraI of s rational f tion is; not iiecet al' the Most efficient-way (. .

4,-: to carry out these iri-E-egffati bu-,t 'integration by p rts can be,Used more
. , .

. I

Apffectively in other ways to exedtyk,the integrations.

. i .

TJ i #a or Example A4-2b; forittu = if ()dv = xn dk .',1, tablishes the
YYY

.

fdrmalizitegrability of xnf(x) 'where -f is any inverse i;c\al ar
. * d .

;--- funCt;-ibn; and, 1 in .view of ExaTnpl A4 -2a, if f(x) =.1.1og x .

C. .
' '

1

Example -A4-2 c ..* .Consider \
. ..

:,2,

Since. 653 x has
)

a mple derivative, 1,8e set u = lag x, clv = x dx .- f

r

it . :'

e...'. +1
.

pi ,...1 we take v. = x to obtain
, .

r + 1 .. ,

-x log x dx r real).

1

r+1
.c.xr log x x = r log x

If r.'=

x
r+1

log

-
we, may take v = log x to obtain
. . . ,

x (log '502 - -14-2c dx,12E_Lc d.
x x

4
4:'

r + 1
1 Cr

i ..------

\-;,' r+1. 'x

(r + 1)2
r.



log x (log :x)2

2

- a result whieh'is obtained more directly from the subttrtution 4x:= t.

. .. 1

'A' The method of Etimple A4-2c.,.fol* ,u:= f(x) and dV &xndx; 'exhibits

the,tOrsk integtabiliVof.any funckon of the inn Xn f(4); when n # -1,'

Where fqxj tasany:Ational-Cdmbination of x an 1,4117)7And Q(x) is a.
,.

quadratic polynomial. InteirattOn by partkexpresses thegiVen integral'in
., '1%;

-7,-t4rms.o.f.#ie intaftralOf 4-----.4'4(x) which may:be. tlianpfOrmadinto the .- ,?)

,. f. n t 1 .

,.&i,

fntegrgI of a ra.:CiOnal-functiOn by.Theorem.AV-1.4Ocilthe:asslitiapd integrability

of:rational functiblas, the repult.follOws. It f011oweip,,,a slighteherpliza,,

tib'I that jp(x)f(x) Is formalltr AntegrableTor.any Polynomial funcacin P.-
, .. 0

..

' 'Priiiorthis argument we observe again that if f is a logarithmic dr illverse

circular, funetion, thesip 'x.n f(x 'is formally integrable. In addition; for
..-

.,1'

110) k.0(kokinU), a rational combinatio94of x and iuiy, the expreasions

x
n
log h(x) and. .x

n
arctan h(x) and are.all formally integrable since the.

' derivatives of log and ardtan and ara rational functions.' .110

Example A4 -2d. Consider the integral .

Veritegrate by parts...

Jx ex do

Set u.,.= x dv =oixdit v = ex. Then by (2) 7

irx exdx = xe r e dx
x x

x-
= xe e

a

,4+
_

Integration by parts may be, used to reduce a simplification rather than -.

g.final'complete integration as 4a-ExappleA4-2c when.'r = 71. ,

.
.

7'. 1
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b6smila:eA1i4.2e. 0Onsider .

'For u = sin ax,

bx .

e sin ax

e
bx

.bic
e dx, v =

b
we obtain

l'.1r'+ ' 17,014
4*:

a
. - -

'j'
=

iA

cos ax,

J = ebx .cos _ax dx

dx'

. V

presents the same difficulties of formal integration as, J. However, by the..

same technique, we' can...express J in terms of I and hopefully may obtain.,

an equation Which .can be solved for I.. Now take 'u = cos. ex '. and

e
bk.

v = in ;2) to obtain

1 bx s12 dx.J - e cos ax + e i

1 bx a
= - e cos ax .+. - I.
b

,Entering the expression for J above.in:the expression for: .I\ and solving

for .I r we obtain .

'4'

I -
,

2
1

2 e
1/4

bx fh sin ax - a cos ax

a + b_

d.

(ii) Recurrence relations.. The.idea here.is to express an integral pf

the general forM n
dx- in terms of .1frik(x) dx..

, .

,
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.Example A4-2f. Consider'
4.1

.

Set \14 =

)11

-aic,r+1
dv =.xrdx".; Thih4

. r.+ 1.
,

)

> 0 -r

x (1 -)x)n
r + 1 ,

n

x..(1

-ldx.
r+1.

. ...

-:where for n = 0, the result corfectl ,

that
' .

;thence

r+
= -xr[(1 - X )Pc (1 - x)11'

r+I
I.
,n r + 1

Now,,obseve

xr+1(1 x)n
n

n

r

r + 1 r +,1 1'n-1 In]

This equation may then be solved for In in terms of I
n-1*

xr+1 (1 - x
)n

+
n

.4
In -

+ r + 1 n+r+1 In-1

xr+1(1 - 30n ,n

.n+r+I n. +"1. +.1 f x
x - +

Now this formula may be applied recursively tO express

in terms of -111_3, etc . to' yield'

dg.

in terms of

r+1
x

I
(1 - X)71 - x) n-2

n
-
h + + 1 .( 1

X)
n
+

n + r . r)(n r

n(n :1) ..."1
(n + ri(n + r - 1) (r )

f

Sinneti-mes. it, ds necessary. -to prepare for integration., by parts .by some
.

preliminaTy rearrangement, ad we.show in the following useful example.



Fcample A4-2K. oondidek

= eGs
n

x dx

write cos x = cos
/1

1 x cos ,.x

=,sintx, to obtain

I 'a dos Ac sin x+ (n 1

.04 n-1
= 'dos . x sin x + (n

cos , x, dv \= cos x dx,.
4 4.

cOsn- x 'sing. x dx

n
COS

-2 z (1 cos2 x)dc..

.

.,

In =icOsn-
1
x sin x + (n 1) [In

-2 In].

(
c

I i

Solving fOr I
li,

we haye

n-1
cos x sin x n -

I
n

- n n n-

'

.Since the,subscript is lowered by 2 at each step we observe for n even

tliat 'the recursive reduction of-the integral terminates at n =0, with.

fdx = x, and for u odd, at n = 1 with

= cos x = x.

,

en the poinciple Use of a recurrence relatiori is:not to obtain the .

formil integral .in terms of elementary -functions (which may not be possible)

but to obtain the original integralf.in.terms:of a simpler integral.

.

Examale A4-2h. Cftsider

'Iron u = xn-1 dv = x e .
x
g

n -x2
x d

1 -X
It

e we obtain
2

. ,

1 n-1,..x (n:- 1) n-2 ,x2

2 1
__x , + x a .., dx

.

757 2,1 f;



: 1 n-1 -x2 n - 1
.

.

In 7 x e
+

I7
n -2

. .

I,
a

If is Odd, the recurrence relation gives
, n
11. in termsof elementary

.1 .

fundtions-and Iv but li.=. - 7 e
-x2

is elementary and /11 is

/t,Ttritallnintegrab1ein terms of elementary functions. If n is.;even, then,...,,,,

the:integration of °In is reduced to the int4gration of
. ,

;.

..
.

, . 2
. .

el,.
I
0

= e dx. )4. -
.

) - 'L 4
1. A

This integral is:mot:elementary. However, it is well known and much used..

..
In-terms:of the error function erf (the area under the normal probability

-Turve),given by'

The-coMmon,tables of

: just ass cotveniently
.

erf. x =

= ,/7 erf (t)r
the error function enable us to'Work with it numerically

.

.

as. the circular funCtions..

Integrate the filOwing.

x.sin 3x

.(b) x 5k.
T-

X3 a -fix

(,,a) -/Tc log ex

(e) log2 bX

(f)..,aog3 x,, --

.

arc cos 7X

(1.1) ardtan

x. 'etc tan x.

Exercises A4-2

(j)
arc cos x/m

1777
4

(k) x sib X

(i)

(m) x
2
-arcsin ax

cds3 2x

(0) sins x

(p) sin (log ,ax

(1) *-x tan? x.

(nrcsinx)
2

sin ax cos bx



. .

Support the geometrical interpretation of*integratio4* (parts by

showing for u = f(x) and v = g(x) where f. have fnyerset;

= Av) and v = 111.(u) where 0 'and 11.i`,gra'-inv.er.pe functions.

.
.Verifyste alleged agietrixample.A4-2b that the MeOlod of'-tlfe example...

. fr*

does demonstrate the reducibility/of xn f(xdx-i;t0 the integ-ralbfa ;* ,

.

o. .

ationatfUnction if :f is any inverse circular"..fUnclkon.;'Or if

vv,
!

,

.!,he logarithmic functipe'
.

.
.

4. Establi- .recurrence relations for each of the following (in each.4ase.

r\m and, n are positive integers).

4

&
(a ) .

n xax

(b) J x
m

log
a'

x dx
4

'n
(c) ...si.n111.1 cos x dx

(a) x
n

arc tan x (b.(
c

,

- (e) - e
ax

(f) x arc sin, x 4pc.

.44 .

of

(Note tfe differente between

odd apd n



A4-3: 1 ntegration of Rational. Functions

'The problems of formal integration in the preceding aections'of this

appendix:were often recast in the forn-of the problem of integrating a rational
:

v -

function. For a rational function there always exists a-formal integral:in

terns ofelementaxl functions. The. formal integral is obteinedby reducing

the rational function to a sumof.a polynomial 'function and functions defined
.

by the elementary forms

(1)
- c)7

(2).
px +
8.)2 b2]

(b > 0).

Wcem be proved that such a reduction is possible,,eitherfromihe

FUndathental Theorem of Algebra whichiequires. the theory of'functions,oi° a

POmplek.Veriable,-or directly
by-Aew7algebraid tgchniques.. ',In either cash

Al complete proof'wbuld take us Outiidethe frame .8f this text.

The rlOuction'of
a'rtctionaletunction into the sum of a polynomial and

terms. of the form (1) and (2) is called, a decomposition into partial fractions.

We give.one dimpleiexample,

(CS)

EkaapleAls3a. A opmmon case is given 'ley the' rational 'expression

1 1, 1

(x - a)(x - ) b - x.=V x - a),

From. the decomposition (3) we immediately obtain the integral

1 1.

(x - a)(x -,b)

1a(log(x b)
, :----1:1

di.
-- log k
b - e x - a

- log(x - )

a' A b.

,r
St

. .

Let. R be any rational.function. By. long division it is always possible

put: R(x) in the foia .

R(X) ..= S(x) + Lia))-

. .'

..:where e..S, P, Q are polynothials and: degreof P 1.sless.than that of

Q.

_ .

e }fie polynomial S is immediately integrable, we may omit it fro
,

...

conside n. It follows from the Fundamental Theorem of Algeb0 (Appendix °

0 that every. Tolynomial .Q(x). with real coefficients has a uniiue factorizaT

tiOn ofthe form



.n .

nil 2

Q(x) if=, x -
% 2 r t!..x-ai [(),c -E12) + b2

(

c
k

are the distihctIreal roots of ,Q, and ak t ibk,

imaginary.rootel (bk

Where the.

.

Now suppose that R(x) =
P(x) wherethedegree of -P At:less than that

of Q.,:and that P.. and' Q have no.compon. factors. Theh we assert that

R(X) is the,..zum of expressions of two standard forms: for each real.root

4

the distinct

C, an expression oftheform

ri r
+45)

'where

x - c
(x - c)

2
'(x

n is the multiplicity of c : for each pair of. conjugate 'imaginary

/ 0)

'roots a't ib an expression of the farm

p,x + q, p x + q

(6)

+
2 2

(x - a)2 + b2 [(x. -,'a)2
b2 +

[(x - a) + b ]2 2m/...

(131.112 qm2

pmx + cam.

1J

. where m 1.s their common multiplicity. We merely use this format as a guide

.

withoUtprOof.'.In each particular case it can be- verified directly that the

decomposition obtainbd.is correct. _Once we Ave obtained and verified the

correctness,of the partial fraction decomposition we have reduced the.inte

:4 gration probleMtolhat aliregrating the simple form (1) . and (2).

Before we embark on the problem of integration let us, see whatia,

Amvolved in the algebraic problem of obtaining thepartial fraction decomposi7..

'tion. The first problem is to obtain the roots:of the polynomial. Q(X). In

:generalthe raots'of a polynomial cannot be obtaini$ from the coefficients by

dformulinvolvin onlyrational operatiOns and rational.powers. There are,

''such formulas for the roots of polynomials of third and fourth degree, but

these fOrmulas'are.generally :useless, For example, theformula for the roots

of a polynomial of 'third degree may involve complex. quantities even. when all

three roots are*real. For computational purposes it would be sufficient to
/

estimate the.roots numerically, but it, is usually eabier. to estimte the, 2

integral directly'(see. Chapter 9): 'Nonetheless, the method of decomposiittn
. . .

is valUable because often the factorization of Q(x) is given by.the,con-: .

ditiOns of the problem and often the factorization is easily obtained.

O .
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N

Ne#, we turn our attention to the problem of obtaining ths partial

fraction decomposition once the denominator is- given in factored fortn.

%First we consider the pyohlem of obtaining the partial fractiOn decom- 4

position of

P x)
0(i)

P(x)

c2)
- c

n
);

where the roots of Q are all real and simple (of multiplicity ,1) and the
.

,,

," degree of P iz less than that of Q. From the foregoing, there exist

cpnstante At, :(E = 1, 2, ...,' n) such that

where

A
2

we, obtain on multiprication by (x

a,
P ( 4) - c1)

S(x)(x - = T(x)
. Q(x)

.An

- .cn

S(x):: is the sum of all the partial fractions but the first: In a

neighborhooebf x el. this equation states that the expression T(x).

defines. the constant function T ,: x Al. Therefore

whence,

This last .exprelln

.**.

P(x)(x - ci)

)C-4 el

X 4 c
1.

4

P(x)
- cn.)

P(ci).

:(ci - c2)(cl .c.j) (ci cn).

can be written tidily if,we. bserve that since

Q(;)
lim lim1.m

x
c

c.A) .

-4.x c,
l - 1

. '
,

P(ci)

Thus A,. '7: Since c is simply a ,symbol for any one of the roots,
'F,7 a

.14

it does not. matte;,whiCh for the purpose of this discussion, we have in genera!.

..13(eic)

9) AL
7

ce(c1).

Q( c

()
'762
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.

Here 'P(x) = x
2

+ x

has simple; zeros at

x2 +.x - 1

(xi+ 1)x(x 1) 10

- 1., Q(x) - Is; Qfl (x) =

0, and 1: From

-1 P(0) :11, P(1

4.- 2 ' 0,2(0) -1 Q1(1

x - 1. The denominator

.which is

4

1 1.

Z7777.7 2 x

easily verified to be.correctr
.4

There are general.
ticbniquesfor the case of Multiple real roots or

imaginary roots, but in such 'cases it is often easier to determine the
,1 *

.decomposition by the method of equated coeffiCientS.,

4

I 4

Example A4-3c. From

x3r - 1 r
.pix=t qi p2x .,-)*ia2

x
t +

x(x2
+ 1)2

x '. 2
+ 1 "(x + 1)

, 2 ,2

we obtain 'on multiplying both sides by x(x2 + 1)2 '4

1
(x4 +.x2) + qi(x3t x) +

P2x
2

't cl2x

4 3
(r ix + (2r + + (41 + COX r,

provided x ./ 0. NoW the coefficients of like powers on the right and left

Must be equal (Ekercises,A4-3, No.4). ThUS we obtain the equations

frOm whiCh

r pi = 0

1
= 1

21. + p = 0
71 2

gl c12

r r -1,

= 1= 1, q2 = - P2 = 1. This yields

. ,

Also called thd method of.undetermined coefficients.
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lc .1
=

1, x+ 1 x- 1

x(x + 1)
3E.

x + 1
+ >2

(x-

.

-

which is easily' verified tqbe correct.

Given:the partial friction decomposiiirt 'of a rational function we

:cOmPlete the work of formal integration by: to integrate the

standard: forma 1) and,(2). IFor.(1) the- integrals are already found. If

n >1.; we have .

(10d)

.and, if

"(101):

f(x._
then

r.

n
.(n - 1)(x - c)n-L

x
r.

1
ax F r log

For (2) we introducithe'sUbstitution

- a).= b,tan u%

where we, assume b.? 0

;4e obtain

(compare Example A4-1b).

px + q

- a)2 + b2]n

Using .dx

2
< U <

2- -

2
cos u

p tan U.,+ pa + q
auJ 'On[i

+ tan2u1n. cos%

- 'cos2n-3u sin u du +.12-L
2n-1

I. cOS21.1-2

b
2n-1

u
, b, .

Of the 1ast two.Integrels, the first is immediately formally integrable and

the second is given by the recurrence reldtion.of ExamPle'A4-2g.. We leave,

anan exercise the problem of completing the integrationankrepresenting .

7

the formal integral in terms of x.. The resulting integral is a sum of terms

of the -following types,

(11a)

. .{(.x

Ax +B
2 -2,k.

- a) + b j

. where, k is a positive integer, k < n,

(11b)

(11c)
(

A' d.rctan
x



:Finally, we deerye-that.if

. the tegral of ''q

sufficient to d erentiate this.

metbek,opteclaated-c

1 ' t

we:know tlie'factorizidipn of 'Q(Xl We knoll

from (ICY:and (11). Therepore'it

f011i and. determine the constants by the

T1)e 1.4t4r81-111* 110i'lals. form

9% '14;'..** I. :

' , %

;1-. . ' ,,,,.

*1' sl;. pi,. ' .. si .V a, 463.0 ÷-1)- + 'd log (x2 +'4) +

.:t.-(.3 try ,... t., .,41-
.

0.
.10 ;-1,..,..-s4,....

..-v,,,, 14ession'is

,.

,A-
11".,4..4 .. .41(

.4/

, , Pp (a + 2a)x3 +.(20 b)x2 +

x x +'14 X2 + 14:

ax - b

X 2 2

arctan +2

I
)

the numerator of this expreSsiOn shoulat be x + 1 we have on. 'equating:

Gioeficients

Whence' .

= 41) = 1,

f

i,...°' 1 i

., It is easy,tO verify-that this yields the ,ccrrect integral. .

'
.

.

. 'Integrate. the following

(a)
x 2::

X2 + 3x + 1

h(b) le3

. 3ic

x3'
) 2 2

(b >

x 2ax + b

,2
x -+ ax +.13.

, (Consider the cases ;

-
a ,(b and .a b)

Exercises



.

(.1)' .

,x, -

(k) tL,4

2. Prove.froM'Equazion 3) that if

/1(..3c)
a1)(x a2) (x

.a < then
I 2
fractions of the form

.3: Prove if

'r rnI 1 r2

1717c

an);

has a decomposition into

-

71,737 x a1 - a2.

.

.where".

artial

n - n-1' n n-1x ... +a =bx +
n 0 n .

for 'all but finitely many.numbers x,,' that the coefficients of like ,

powers. on the right and left are equal,, i.e., ak = k = 0, 1,

. -

...r

4... Verify that.
px'+ q
a)2 b2]

Of the forme (11ai,b, c)... .- .

x can be expreasedesthe sum of terms



A44. definite Integrals

In Chapter ,9 and 'earlier sections of. this appendix'ma.eddressad ourselves

.

primarily to the problem of finding the indefinite integral of azigtQlfungtion':0

In principle, thii4iVaS the problem of evaluating any
definite integral of the

function: In practiCe; it ianftendesirable or neceSsary,,t4 evelmate a defi

integral,:not bY-Tormal integration, but'bisomeother metClod;altogether...

It may be impossible to,obtain an exPlidit representationnf:the indefinite

integral in terms of .elementary functions, yet some special 'symmetry:may

yield. the value of .a given definite-integral,effortlesaly. Evenif the formal

expreseion' for the indefinite integral is obtainable, the use of a symmetry

condition may baa worthwhild,shortout. Often the idea of integral remains .

appropriate when the Riemann integral,: as strictly defined, does not exist

because the range_ or donlaIn of the integrand may l*e,unbOunded, .In these

cases;-we have to extend the definitiOn of integral in a meaningful way. All

(
these problems are treated in this section.

(i) Symmetry. Watcli:for symmetries; the observation that a, symmetry.

exists often provides a directsolutionto a problem, oran important'sitpli7

fication. We haVaa,lready pointed'out onausefUl symmetry in Section-6-4.

If f is an odd function and integrable on [ -a,a], then

-,.

a
:..

..

P(X)dx = 0.

-a

/

I = x e
x
2

. sin
4

x dx.

-7( '

Tit. is hOpeleaS to fi9A the indefinite integral, and it Is pot needet since

(2)

.If'f: is an integrable even function On -ate then .

a
.

i'

ff(x)dxodx = 2. f(x)dx.

-a
. 0

767 .
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The-6dd iowers contribute zero and for tte even powers We obtain

x

I =.2 (a
O

+ a
2
t + ...

fi
V.

e
2n+.1'.X3 a;x.

.= 2 ('a x +.
0 .. .3

+

Often an integral which exhibits no obvious symmetry can be transformed

into asymmetric'integral. This is specific for each case and no general rulei

+ a"
2n

t
2n

dx

for discoVering such symmetries can be giVen...'.

Example A4 -4c. Consider' . . .

'
Since thtgraph y = 31,77:77 has a center of symmetry at

. u = x - '2 . and, find

5

I = 347=i dx

we set_

:Another important symmetry of a function is periodicity.'

.

.

. ,

If.the,functfOn f is .integrable and PeriodicYith period

:p. then the integrals of f' over intervals. of, length, p are

all the same; i:e.,

a±P' i)+1). '

f(x)dx = ' f(x)dx
b

C3)

for all a and b.

so

The'atatement is geothetricaily obvious. The graph y = f(x) over. any

interval of length p.
repregentS4hecOmplett .graph inthe sense that the

W.

picture, of the function from a to p is identical -to the picture from

a + to a +.(k +1.)p :where-7k 1:8 an ineger.- The entire graph can be

thought of.aS a sequenceof_identiCal pictures of width P,. .laid end7to-

en4.(FigUre.A4-440. -If.aframe of width -p t laid over the graph (the

768 9`9.,
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111111111111
41"k

4

'it

. 7

a +kp b+p

1

-i-(k+2)1)
a.

Figure Al+-14.a
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iff

interval + ,in the figure) then the part of the total graph within.

the frame may be 'cut along a line a + ki3 and i'eassembied to:form the

'original picture' by interchanging the twopijece formed by the out.

_geometriaal'.discussion is exactly paraphrased by the. analytical proof. .

The proofois left to. Exercises A44, Dumber 12.'

Example A4-114.. Conside'r

I = al cos 2vx + + a
k

cos 2k.ox dx

0

Since the integrand is periodic with. period 1

I =2.2 a cos 2vitx dx +

1/4

0 v=0 '0

cos avrx

C

v=0

a cos 2virx dx.

2vn

.

dxi=
sin 2vxx

I

I
= 0

._

sin (2-1).
dx

2vit

(i1) Special reductions.

for a definite integral is

The general fOrin of a recurrence yelatiOn

b.b
b

fn(x).dx = 8n(x) + cn fn_1(x)dx.

Quite often specific problems lead to integrals for which the "boundary" term

b-

gn(x) ;n(b) 'gia(a)

a

is zero for n > 0 , say. If so, we immediately have,

770 22s
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lb , et
, 13

n n 4-1 c1 0f kx, = c. c . c ,f (x)

Thus in Example A441", we could conclude at once from

the;

"74' - -

xl!14-1(1 - x)"s:4.... n
m +,:n. + 1 n + m +

I
nkn .- 1) 1

+ m + 1)(n + m) '..(m +

. rIn - 1) ..(.. 1

t
jx113(1 x)n-1 dx

Thus we obtain an. impohant.
1t

.

X (1

n + + 1 (n (m + 1)

Connection 'with the

x)- dx [(n m

f 4.
Example A4-1.t.e.gt A case tv special interest is

binomial coeffircierits:
."

1) (n1

s v/2.Ivcos 11'. dx
v /.1

Pi-om tfierresn;_t of EXample we have ce"

°
. ,

_ v/2.
. cos x sin x

+
v -; 1

1.

v 0.
- v7:

I v-2 .

For v > 1, this4lelds simply

(4)

For v even, v =

(5a)

For ,v odd,

4 (513)

4.1

vI
v . '4u .

2n, we obtain

' I.2n -
.

(2n - 1)(2n - 5), ..
, 2n(2n - 2)

v 20 + 1, we obtain, /

'2n +1 (2n + 1) (2n -.1) ....3
2n(2ft 0) ....2

a.

771
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?.

-.,, prom,(5a) and (5b) e-can be obtained a graceful represen-

tationof . known-as Wallis's Product. Observe that,
.2 4 ' i .

-

. ,

. 2 2 .
.

2
.11

art 2:- .4 6.
2

:

,

(2n)
2 I

2 r7-3- 3.5 5.7 (2n.- 1)(2n +
1)., 1.201

,_- v+ 1 _:

Now, since 0 < cos x.< 1 on 11P0, ,we nave .cos x.< cosy x for

all v .so that Iv+i <Iv: It follows-Oat 712n+1
12n 57 i2n4''

. -
and .: since

1
/eI*n,.

2n 1 ,
: =

2n- '2n+1'
that

ct, .-

.

I
2n <1

2n+1,

Taking limits - -we obtain A_ im

I
2n i,

whdnce

11..00 2n+1

2. 1-3 3 5 . 5 7

where by this infinite product, we mean simply.

liM :. ? 22 42 62 (2n 2-----_____
n-400 1' 3

.

3. 5 '5 .7 .'",(2n :71) 2n +

lim [2n.(nt.)2

n 2n + 1 (2n) !

e

.

The verifiCatiOn#lat.the two expressions in these limits are equai

e,

* John. Wallis (1616--. 1703), English:



. .

, . .
Exercises

. .

tollowing detinite" integrals:

'2

log-. k :dx

37

ainnl x dx, ,a pesitive
integer,)

+-0
pdsitive integer)

8.

. .

sin
m

x cosh x dx 10.

o

f n.P4' sins e
a2 sing 0 + b2 coa2 6

a > 0 , .b > 0

%.

.' Compare .f(x)dx with f(xrdx .when ''f ..is even, or Odd toU
. ,

1
-a

,
derive the results `(l) and (2) of the text by a methdd other than the

''.

one you employed for Exercises 6-4, Number. 4.t.

Prove if f integrable and periodic of period p, then for

a and b

a+p
f(x)dx =

b+p
f(x)dx.'

a b
- .

" 13. Prove that if -:; > 2 then

ig.' :

dt
1-.1

/
,.00 < ,. -.2 ------- <.524.

0. 17-73--i
. .

14. .Prove that .3I-2x(.1
sin .kjj

*



.

1 . Determine the value.exact'to two decimal places of.

,-.;

e36.1 $,,.. ..

sin(x log x)

1

. 17. Elfaluite

n/4 t +4

-n /4.
-

t7

.1

. 4

2 cos 2t
dt

t.

.'

(Hint: 'Expr ss the inteFand as the sum of a sYmmetrie part and an

integrable p r t.)
,4 ,
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